Biological effects of low-dose ionizing radiation (IR) have been unclear until now. Saliva, because of the ease of collection, could be valuable in studying low-dose IR effects by means of surface-enhanced Raman spectroscopy (SERS). The objective of our study was to compare the salivary SER spectra recorded before and after low-dose IR exposure in the case of pediatric patients (PP). Unstimulated saliva was collected from ten PP before and after irradiation with a cone beam computed tomography (CBCT) machine used for diagnostic purposes. The SERS measurements have been recorded on dried saliva samples using a solid nanosilver plasmonic substrate synthesized using an original method developed in our laboratory. The experimental results showed that salivary SER spectra are dominated by three vibrational bands (441,735 and 2107 cm−1) that can be assigned to bending and stretching vibrations of salivary thiocyanate (SCN-). After exposure, an immediate increase of vibrational bands assigned to SCN- has been recorded in the case of all samples, probably as a result of IR interaction with oral cavity. This finding suggests that SCN- could be used as a valuable biomarker for the detection and identification of low-dose radiation effects.
Cone beam computed tomography can be used in pediatric population when a tridimensional analysis of dental and maxillofacial bone structures is required. Even though CBCT is considered a low dose radiological examination, ionizing radiation is a known human carcinogenic factor. Furthermore, biological effects are more important in young patients because of their higher radiosensitivity. Orthodontic treatment is typically initiated at young ages and the most common radiographs at this age are dental. This makes it important to quantify the effects of diagnostic radiographs, in particular of CBCT, due to the fact that the radiation doses are higher compared to conventional radiological methods. So far, the carcinogenic response after low dose radiation exposure is not fully understood in the scientific literature. The aim of our review was to emphasize the main indications of CBCT in orthodontics and to evaluate the radiation doses and potential risks of CBCT irradiation of pediatric patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.