Community-acquired pneumonia with parapneumonic effusion/empyema is not uncommon in children and can cause serious illness; there -fore, the timely optimization of antimicrobial therapy is essential in this situation. The aim of this study was to determine whether using real-time polymerase chain reaction of pleural fluids to identify the causative organism improves the process of microbiological diagnosis in the context of community-acquired pneumonia with parapneumonic effusion/empyema. This technique was compared with traditional culture methods for microbiological diagnosis.
BackgroundLittle is known about the microbiology of diarrhoeal disease in Canada's Arctic regions. There are a number of limitations of conventional microbiology testing techniques for diarrhoeal pathogens, and these may be further compromised in the Arctic, given the often long distances for specimen transport.ObjectiveTo develop a novel multiple-target nanolitre real-time reverse transcriptase (RT)-PCR platform to simultaneously test diarrhoeal specimens collected from residents of the Qikiqtani (Baffin Island) Region of Nunavut, Canada, for a wide range of bacterial, parasitic and viral agents.Study design/methodsDiarrhoeal stool samples submitted for bacterial culture to Qikiqtani General Hospital in Nunavut over an 18-month period were tested with a multiple-target nanolitre real-time PCR panel for major diarrhoeal pathogens including 8 bacterial, 6 viral and 2 parasitic targets.ResultsAmong 86 stool specimens tested by PCR, a total of 50 pathogens were detected with 1 or more pathogens found in 40 (46.5%) stool specimens. The organisms detected comprised 17 Cryptosporidium spp., 5 Clostridium difficile with toxin B, 6 Campylobacter spp., 6 Salmonella spp., 4 astroviruses, 3 noroviruses, 1 rotavirus, 1 Shigella spp. and 1 Giardia spp. The frequency of detection by PCR and bacterial culture was similar for Salmonella spp., but discrepant for Campylobacter spp., as Campylobacter was detected by culture from only 1/86 specimens. Similarly, Cryptosporidium spp. was detected in multiple samples by PCR but was not detected by microscopy or enzyme immunoassay.Conclusions
Cryptosporidium spp., Campylobacter spp. and Clostridium difficile may be relatively common but possibly under-recognised pathogens in this region. Further study is needed to determine the regional epidemiology and clinical significance of these organisms. This method appears to be a useful tool for gastrointestinal pathogen research and may also be helpful for clinical diagnostics and outbreak investigation in remote regions where the yield of routine testing may be compromised.
BackgroundRapid diagnosis of GAS pharyngitis may improve patient care by ensuring that patients with GAS pharyngitis are treated quickly and also avoiding unnecessary use of antibiotics in those without GAS infection. Very few molecular methods for detection of GAS in clinical throat swab specimens have been described.MethodsWe performed a study of a laboratory-developed internally-controlled rapid Group A streptococcus (GAS) PCR assay using flocked swab throat specimens. We compared the GAS PCR assay to GAS culture results using a collection of archived throat swab samples obtained during a study comparing the performance of conventional and flocked throat swabs.ResultsThe sensitivity of the GAS PCR assay as compared to the reference standard was 96.0% (95% CI 90.1% to 98.4%), specificity 98.6% (95% CI 95.8% to 99.5%), positive predictive value (PPV) 96.9% (95% CI 91.4% to 99.0%) and negative predictive value (NPV) of 98.1% (95% CI 95.2% to 99.2%). For conventional swab cultures, sensitivity was 96.0% (95% CI 90.1% to 98.4%), specificity 100% (95% CI 98.2% to 100%), PPV 100%, (95% CI 96.1% to 100%) and NPV 98.1% (95% CI 95.2% to 99.3%)ConclusionsIn this retrospective study, the GAS PCR assay appeared to perform as well as conventional throat swab culture, the current standard of practice. Since the GAS PCR assay, including DNA extraction, can be performed in approximately 1 hour, prospective studies of this assay are warranted to evaluate the clinical impact of the assay on management of patients with pharyngitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.