Abstract. Thrombospondin-1 (TSP1) has potent biological effects on vasculature smooth muscle cells (SMCs) and endothelial cells. The regulation of extracellular accumulation of TSP1 is mediated by a previously obscure process of endocytosis which leads to its lysosomal degradation. Since members of the low density lipoprotein receptor (LDLR) family have been found to mediate endocytosis which leads to degradation of a diverse array of ligands, we evaluated their possible role in the uptake and degradation of TSP1 by vascular SMCs, endothelial cells and fibroblasts. 125I-TSP1 was found to be internalized and degraded lysosomally by all these cell types. Both the internalization and degradation of 125I-TSP1 could be inhibited by a specific antagonist of the LDLR family, the 39-kD receptorassociated protein (RAP). Antibodies to the LDLRrelated protein (LRP) completely blocked the uptake and degradation of 125I-TSP1 in SMCs and fibroblasts but not endothelial cells. Solid-phase binding assays confirmed that LRP bound to TSP1 and that the interaction was of high affinity (Kd = 5 nM). Neither RAP nor LRP antibodies inhibited the binding of 125I-TSP1 to surfaces of SMCs. However, cell surface binding, as well as, endocytosis and degradation could be blocked by heparin or by pre-treatment of the cells with either heparitinase, chondroitinase or 13-D-xyloside. The data indicates that cell surface proteoglycans are involved in the LRP-mediated clearance of TSP1. A model for the clearance of TSP1 by these cells is that TSP1 bound to proteoglycans is presented to LRP for endocytosis. In endothelial cells, however, the internalization of TSP1 was not mediated by LRP but since RAP inhibited TSP1 uptake and degradation, we postulate that another member of the LDLR family is likely to be involved.
Rab4 regulates recycling from early endosomes. We investigated the role of the rab4 effector rabaptin-5a and its putative partner g 1 -adaptin in membrane recycling. We found that rabaptin-5a forms a ternary complex with the g 1 ±s 1 subcomplex of AP-1, via a direct interaction with the g 1 -subunit. The binding site for g 1 -adaptin is in the hinge region of rabaptin-5a, which is distinct from rab4-and rab5-binding domains. Endogenous or ectopically expressed g 1 -adaptin localized to both the trans-Golgi network and endosomes. Co-expressed rabaptin-5a and g 1 -adaptin, however, co-localized in a rab4-dependent manner on recycling endosomes. Transfection of rabaptin-5a caused enlarged endosomes and delayed recycling of transferrin. RNAi of rab4 had an opposing effect on transferrin recycling. Collectively, our data show that rab4-GTP acts as a scaffold for a rabaptin-5a± g 1 -adaptin complex on recycling endosomes and that interactions between rab4, rabaptin-5a and g 1 -adaptin regulate membrane recycling.
The neuronal protein GRASP-1 is shown to be a key molecule controlling endosomal trafficking and thereby regulating synapse integrity and synaptic plasticity.
The receptor for advanced glycation end products (RAGE) is involved in multiple stages of tumor development and malignization. To gain further knowledge on the RAGE role in tumor progression, we investigated the receptor expression profile and its subcellular localization in melanoma cells at different stages of malignancy. We found that RAGE clustered at membrane ruffles and leading edges, and at sites of cell-to-cell contact in primary melanoma cells (e.g., MelJuSo), in contrast with a more dispersed localization in metastatic cells (e.g., SK-Mel28). RAGE silencing by RNAi selectively inhibited migration of MelJuSo cells, whilst having no influence on SK-Mel28 cell migration, in a "wound healing" assay. Western blot detection of RAGE showed a more complex RAGE oligomerization in MelJuSo cells compared to melanocytes and SK-Mel28 cells. By competing the binding of antibodies with recombinant soluble RAGE, an oligomeric form running at approximately 200 kDa was detected, as it was the monomeric RAGE of 55-60 kDa. SDS-PAGE electrophoresis under reducing versus nonreducing conditions indicated that the oligomer of about 200 kDa is formed by disulfide bonds, but other interactions are likely to be important for RAGE multimerization in melanoma cells. Immunofluorescence microscopy revealed that treatment with two cholesterol-chelating drugs, nystatin and filipin, significantly affected RAGE localization in MelJuSo cells. SK-Mel28 cells showed a reduced RAGE glycosylation and association with cholesterol-rich membranes and also a considerable downregulation of the soluble forms. Our results indicate that RAGE isoform expression and subcellular localization could be important determinants for the regulation of its function in tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.