Biomarkers are increasingly important in the clinical management of complex diseases, yet our ability to discover new biomarkers remains limited by our dependence on endogenous molecules. Here we describe the development of exogenously administered `synthetic biomarkers' composed of mass-encoded peptides conjugated to nanoparticles that leverage intrinsic features of human disease and physiology for noninvasive urinary monitoring. These protease-sensitive agents perform three functions in vivo: target sites of disease, sample dysregulated protease activities and emit mass-encoded reporters into host urine for multiplexed detection by mass spectrometry. Using mouse models of liver fibrosis and cancer, we show that they can noninvasively monitor liver fibrosis and resolution without the need for invasive core biopsies and can substantially improve early detection of cancer compared with clinically used blood biomarkers. This approach of engineering synthetic biomarkers for multiplexed urinary monitoring should be broadly amenable to additional pathophysiological processes and to point-of-care diagnostics.
The activity of Tsp, a periplasmic endoprotease of Escherichia coli, has been characterized by assaying the cleavage of protein and peptide substrates, determining the cleavage sites in several substrates, and investigating the kinetics of the cleavage reaction. Tsp efficiently cleaves substrates that have apolar residues and a free a-carboxylate at the C-terminus. Tsp cleaves its substrates at a discrete number of sites but with rather broad primary sequence specificity. In addition to preferences for residues at the C-terminus and cleavage sites, Tsp displays a preference for substrates that are not stably folded: unstable variants of Arc repressor are better substrates than a hyperstable mutant, and a peptide with little stable structure is cleaved more efficiently than a protein substrate. These data are consistent with a model in which Tsp cleavage of a protein substrate involves binding to the C-terminal tail of the substrate, transient denaturation of the substrate, and then recognition and hydrolysis of specific peptide bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.