Portfolio credit risk models estimate the range of potential losses due to defaults or deteriorations in credit quality. Most of these models perceive default correlation as fully captured by the dependence on a set of common underlying risk factors. In light of empirical evidence, the ability of such a conditional independence framework to accommodate for the occasional default clustering has been questioned repeatedly. Thus, financial institutions have relied on stressed correlations or alternative copulas with more extreme tail dependence. In this paper, we propose a different remedy-augmenting systematic risk factors with a contagious default mechanism which affects the entire universe of credits. We construct credit stress propagation networks and calibrate contagion parameters for infectious defaults. The resulting framework is implemented on synthetic test portfolios wherein the contagion effect is shown to have a significant impact on the tails of the loss distributions.
One of the most challenging aspects in the analysis and modelling of financial markets, including Credit Default Swap (CDS) markets, is the presence of an emergent, intermediate level of structure standing in between the microscopic dynamics of individual financial entities and the macroscopic dynamics of the market as a whole. This elusive, mesoscopic level of organisation is often sought for via factor models that ultimately decompose the market according to geographic regions and economic industries. However, at a more general level, the presence of mesoscopic structure might be revealed in an entirely data-driven approach, looking for a modular and possibly hierarchical organisation of the empirical correlation matrix between financial time series. The crucial ingredient in such an approach is the definition of an appropriate null model for the correlation matrix. Recent research showed that community detection techniques developed for networks become intrinsically biased when applied to correlation matrices. For this reason, a method based on Random Matrix Theory has been developed, which identifies the optimal hierarchical decomposition of the system into internally correlated and mutually anti-correlated communities. Building upon this technique, here we resolve the mesoscopic structure of the CDS market and identify groups of issuers that cannot be traced back to standard industry/region taxonomies, thereby being inaccessible to standard factor models. We use this decomposition to introduce a novel default risk model that is shown to outperform more traditional alternatives.
Robustness of credit portfolio models is of great interest for financial institutions and regulators, since misspecified models translate to insufficient capital buffers and a crisis-prone financial system. In this paper, we propose a method to enhance credit portfolio models based on the model of Merton by incorporating contagion effects. While in most models the risks related to financial interconnectedness are neglected, we use Bayesian network methods to uncover the direct and indirect relationships between credits, while maintaining the convenient representation of factor models. A range of techniques to learn the structure and parameters of financial networks from real Credit Default Swaps (CDS) data is studied and evaluated. Our approach is demonstrated in detail in a stylized portfolio and the impact on standard risk metrics is estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.