MicroRNAs are known to regulate developmental processes but their mechanism of regulation remains largely uncharacterized. We show the transcription factor Twist-1 drives the expression of a 7.9-kb noncoding RNA transcript (from the Dynamin-3 gene intron) that encodes a miR-199a and miR-214 cluster. We also show that knocking down Twist-1 with shRNAs decreased miR-199a/214 levels and that Twist-1 bound an E-Box promoter motif to developmentally regulate the expression of these miRNAs. The expression of HIF-1 (known to mediate Twist-1 transcription), miR-199a and miR-214 was maximal at E12.5 and the miRNAs were expressed specifically in mouse cerebellum, midbrain, nasal process and fore- and hindlimb buds. This study shows the expression of the miR199a/214 cluster is controlled by Twist-1 via an E-Box promoter element and supports a role for these miRNAs as novel intermediates in the pathways controlling the development of specific neural cell populations.
SummaryHuman pluripotent stem cells (hPSCs) hold great promise for understanding kidney development and disease. We reproducibly differentiated three genetically distinct wild-type hPSC lines to kidney precursors that underwent rudimentary morphogenesis in vitro. They expressed nephron and collecting duct lineage marker genes, several of which are mutated in human kidney disease. Lentiviral-transduced hPSCs expressing reporter genes differentiated similarly to controls in vitro. Kidney progenitors were subcutaneously implanted into immunodeficient mice. By 12 weeks, they formed organ-like masses detectable by bioluminescence imaging. Implants included perfused glomeruli containing human capillaries, podocytes with regions of mature basement membrane, and mesangial cells. After intravenous injection of fluorescent low-molecular-weight dextran, signal was detected in tubules, demonstrating uptake from glomerular filtrate. Thus, we have developed methods to trace hPSC-derived kidney precursors that formed functioning nephrons in vivo. These advances beyond in vitro culture are critical steps toward using hPSCs to model and treat kidney diseases.
In the past 2 years, extraordinary developments in RNA interference (RNAi)-based methodologies have seen small interfering RNAs (siRNA) become the method of choice for researchers wishing to target specific genes for silencing. In this review, an historic overview of the biochemistry of the RNAi pathway is described together with the latest advances in the RNAi field. Particular emphasis is given to strategies by which siRNAs are used to study mammalian gene function. In this regard, the use of plasmid-based and viral vector-based systems to mediate long-term RNAi in vitro and in vivo are described. However, recent work has shown that non-specific silencing effects and activation of the interferon response may occur following the use of some siRNA and delivery vector combinations. Future goals must therefore be to understand the mechanisms by which siRNA delivery leads to unwanted gene silencing effects in cells and, in this way, RNAi technology can reach its tremendous potential as a scientific tool and ultimately be used for therapeutic purposes.
Background: “Mirrored” or complementary mammalian miRNAs have been predicted but none have yet been characterized.Results: miR-3120 and miR-214 are produced from the same intronic locus; miR-3120 regulates heat shock cognate protein 70 (Hsc70) and auxilin expression and vesicle uncoating.Conclusion: miR-3120 is a mirror miRNA regulating endocytic function.Significance: Mirror miRNAs are important mammalian gene regulatory units, and many more remain to be found and characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.