Abstract. Global controls on month-by-month fractional burnt area (2000)(2001)(2002)(2003)(2004)(2005) were investigated by fitting a generalised linear model (GLM) to Global Fire Emissions Database (GFED) data, with 11 predictor variables representing vegetation, climate, land use and potential ignition sources. Burnt area is shown to increase with annual net primary production (NPP), number of dry days, maximum temperature, grazing-land area, grass/shrub cover and diurnal temperature range, and to decrease with soil moisture, cropland area and population density. Lightning showed an apparent (weak) negative influence, but this disappeared when pure seasonal-cycle effects were taken into account. The model predicts observed geographic and seasonal patterns, as well as the emergent relationships seen when burnt area is plotted against each variable separately. Unimodal relationships with mean annual temperature and precipitation, population density and gross domestic product (GDP) are reproduced too, and are thus shown to be secondary consequences of correlations between different controls (e.g. high NPP with high precipitation; low NPP with low population density and GDP). These findings have major implications for the design of global fire models, as several assumptions in current models -most notably, the widely assumed dependence of fire frequency on ignition rates -are evidently incorrect.
Fires are a major contributor to atmospheric budgets of greenhouse gases and aerosols, affect soils and vegetation properties, and are a key driver of land use change. Since the 1990s, global burned area (BA) estimates based on satellite observations have provided critical insights into patterns and trends of fire occurrence. However, these global BA products are based on coarse spatial-resolution sensors, which are unsuitable for detecting small fires that burn only a fraction of a satellite pixel. We estimated the relevance of those small fires by comparing a BA product generated from Sentinel-2 MSI (Multispectral Instrument) images (20-m spatial resolution) with a widely used global BA product based on Moderate Resolution Imaging Spectroradiometer (MODIS) images (500 m) focusing on sub-Saharan Africa. For the year 2016, we detected 80% more BA with Sentinel-2 images than with the MODIS product. This difference was predominately related to small fires: we observed that 2.02 Mkm2 (out of a total of 4.89 Mkm2) was burned by fires smaller than 100 ha, whereas the MODIS product only detected 0.13 million km2 BA in that fire-size class. This increase in BA subsequently resulted in increased estimates of fire emissions; we computed 31 to 101% more fire carbon emissions than current estimates based on MODIS products. We conclude that small fires are a critical driver of BA in sub-Saharan Africa and that including those small fires in emission estimates raises the contribution of biomass burning to global burdens of (greenhouse) gases and aerosols.
Fires play an important role in ecosystem dynamics. Long-term controls on global burned area include fuel continuity and moisture, with ignitions and human activity becoming dominant in specific ecosystems. Changes in fuel continuity and moisture are the main drivers of changes of fire globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.