In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
We generated a monoclonal antibody, RG-1, that binds to highly conserved L2 residues 17 to 36 and neutralizes human papillomavirus 16 (HPV16) and HPV18. Passive immunotherapy with RG-1 was protective in mice. Antiserum to the HPV16 L2 peptide comprising residues 17 to 36 (peptide 17-36) neutralized pseudoviruses HPV5, HPV6, HPV16, HPV 18, HPV31, HPV 45, HPV 52, HPV 58, bovine papillomavirus 1, and HPV11 native virions. Depletion of HPV16 L2 peptide 17-36-reactive antibodies from cross-neutralizing rabbit and human L2-specific sera abolished cross-neutralization and drastically reduced neutralization of the cognate type. This cross-neutralization of diverse HPVs associated with cervical cancer, genital warts, and epidermodysplasia verruciformis suggests the possibility of a broadly protective, peptide-based vaccine.Minor capsid antigen L2 is a possible alternative to highly multivalent L1 virus-like-particle (VLP) vaccines to obtain broad protection against oncogenic human papillomaviruses (HPVs) (16). Vaccination with L2 as a full-length protein or as polypeptides protects animals against homologous-type viral challenges at both cutaneous and mucosal sites (2-4, 6, 12). Protection is not mediated by cellular immunity, suggesting the importance of neutralizing antibodies (5, 7). L2 is subdominant in the context of L1/L2 VLPs (19), but antibodies elicited by recombinant L2 immunogens are able to neutralize a remarkably broad range of HPV genotypes (15). This suggests that neutralizing epitopes of L2 may be conserved across HPV types due to some critical viral function (13). Furthermore, it raises the possibility that a single L2 protein-or peptide-based vaccine might provide comprehensive protection against the HPV types causing genital cancer and genital warts and possibly even those associated with cutaneous warts and epidermodysplasia verruciformis (EV).Identification of neutralizing epitopes within HPV16 L2. The rational design of a broadly protective L2-based preventive vaccine requires knowledge of the relevant neutralizing epitopes. To identify the neutralizing epitopes in L2, we vaccinated BALB/c mice with full-length six-His-tagged HPV16 L2 protein and produced hybridomas by using standard procedures (18). Of the 100 supernatants reactive with L2 protein, only 45 reacted with HPV16 L1/L2 pseudovirions, and only one (RG-1) neutralized HPV16 pseudovirus and was cloned. The RG-1 supernatant exhibited a neutralizing titer of 1,280 and also reacted with HPV16 L1/L2 pseudivirions by an enzyme-linked immunosorbent assay (ELISA). RG-1 and another four monoclonal antibodies (MAbs) that showed the highest ELISA reactivities with HPV16 pseudovirions were all the immunoglobulin G1() [IgG1()] isotype and reacted with HPV16 L2 protein by Western blotting (Table 1).Each MAb was screened for reactivity with 56 20-mer peptides of HPV16 L2 that overlapped each other by 12 amino acids ( Table 1). The neutralizing MAb RG-1 reacted with a peptide comprising residues 17 to 36 of HPV 16 L2 (peptide 17-36) (Fig. 1A) but not the ...
Phosphodiesterases (PDEs) regulate cyclic nucleotide levels. Increased cyclic AMP (cAMP) signaling has been associated with PRKAR1A or GNAS mutations and leads to adrenocortical tumors and Cushing syndrome. We investigated the genetic source of Cushing syndrome in individuals with adrenocortical hyperplasia that was not caused by known defects. We performed genome-wide SNP genotyping, including the adrenocortical tumor DNA. The region with the highest probability to harbor a susceptibility gene by loss of heterozygosity (LOH) and other analyses was 2q31-2q35. We identified mutations disrupting the expression of the PDE11A isoform-4 gene (PDE11A) in three kindreds. Tumor tissues showed 2q31-2q35 LOH, decreased protein expression and high cyclic nucleotide levels and cAMP-responsive element binding protein (CREB) phosphorylation. PDE11A codes for a dual-specificity PDE that is expressed in adrenal cortex and is partially inhibited by tadalafil and other PDE inhibitors; its germline inactivation is associated with adrenocortical hyperplasia, suggesting another means by which dysregulation of cAMP signaling causes endocrine tumors.
The type 1alpha regulatory subunit (RIalpha) of cAMP-dependent protein kinase (PKA) (coded by the PRKAR1A gene) is the main component of type I PKA, which regulates most of the serine-threonine kinase activity catalyzed by the PKA holoenzyme in response to cAMP. Carney complex (CNC), or the complex of spotty skin pigmentation, myxomas, and endocrine overactivity, is a multiple endocrine (and not only) neoplasia syndrome that is due to PRKAR1A-inactivating mutations. The R1alpha protein and PRKAR1A mRNA have been found to be up-regulated in a series of cell lines and human and rodent neoplasms, suggesting this molecule's involvement in tumorigenesis and its potential role in cell cycle regulation, growth, and/or proliferation. Alterations in PKA activity elicit a variety of effects depending on the tissue, developmental stage, degree of differentiation, and cAMP levels. In addition, RIalpha may have functions independent of PKA. The presence of inactivating germline mutations and the loss of its wild-type allele in some CNC lesions indicate that PRKAR1A might function as a tumor suppressor gene in these tissues, but could PRKAR1A be a classic tumor suppressor gene? Probably not, and this review explains why.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.