The maximum Nash welfare (MNW) solution—which selects an allocation that maximizes the product of utilities—is known to provide outstanding fairness guarantees when allocating divisible goods. And while it seems to lose its luster when applied to indivisible goods, we show that, in fact, the MNW solution is strikingly fair even in that setting. In particular, we prove that it selects allocations that are envy-free up to one good—a compelling notion that is quite elusive when coupled with economic efficiency. We also establish that the MNW solution provides a good approximation to another popular (yet possibly infeasible) fairness property, the maximin share guarantee, in theory and—even more so—in practice. While finding the MNW solution is computationally hard, we develop a nontrivial implementation and demonstrate that it scales well on real data. These results establish MNW as a compelling solution for allocating indivisible goods and underlie its deployment on a popular fair-division website.
We adopt a utilitarian perspective on social choice, assuming that agents have (possibly latent) utility functions over some space of alternatives. For many reasons one might consider mechanisms, or social choice functions, that only have access to the ordinal rankings of alternatives by the individual agents rather than their utility functions. In this context, one possible objective for a social choice function is the maximization of (expected) social welfare relative to the information contained in these rankings. We study such optimal social choice functions under three different models, and underscore the important role played by scoring functions. In our worst-case model, no assumptions are made about the underlying distribution and we analyze the worst-case distortion-or degree to which the selected alternative does not maximize social welfare-of optimal social choice functions. In our average-case model, we derive optimal functions under neutral (or impartial culture) distributional models. Finally, a very general learning-theoretic model allows for the computation of optimal social choice functions (i.e., that maximize expected social welfare) under arbitrary, sampleable distributions. In the latter case, we provide both algorithms and sample complexity results for the class of scoring functions, and further validate the approach empirically.
The maximum Nash welfare (MNW) solution -which selects an allocation that maximizes the product of utilities -is known to provide outstanding fairness guarantees when allocating divisible goods. And while it seems to lose its luster when applied to indivisible goods, we show that, in fact, the MNW solution is unexpectedly, strikingly fair even in that setting. In particular, we prove that it selects allocations that are envy free up to one good -a compelling notion that is quite elusive when coupled with economic efficiency. We also establish that the MNW solution provides a good approximation to another popular (yet possibly infeasible) fairness property, the maximin share guarantee, in theory and -even more so -in practice. While finding the MNW solution is computationally hard, we develop a nontrivial implementation, and demonstrate that it scales well on real data. These results lead us to believe that MNW is the ultimate solution for allocating indivisible goods, and underlie its deployment on a popular fair division website.
Abstract. We study the impact of fairness on the efficiency of allocations. We consider three different notions of fairness, namely proportionality, envy-freeness, and equitability for allocations of divisible and indivisible goods and chores. We present a series of results on the price of fairness under the three different notions that quantify the efficiency loss in fair allocations compared to optimal ones. Most of our bounds are either exact or tight within constant factors. Our study is of an optimistic nature and aims to identify the potential of fairness in allocations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.