Rationale:
Diabetic cardiomyopathy (DbCM) is a major complication in type-1 diabetes (T1D), accompanied by altered cardiac energetics, impaired mitochondrial function and oxidative stress. Previous studies indicate that T1D is associated with increased cardiac expression of Krüppel-like factor-5 (KLF5) and Peroxisome Proliferator Activated Receptor (PPAR)α that regulate cardiac lipid metabolism.
Objective:
In this study, we investigated the involvement of KLF5 in DbCM and its transcriptional regulation.
Methods and Results:
KLF5 mRNA levels were assessed in isolated cardiomyocytes from cardiovascular patients with diabetes and was higher compared with non-diabetic individuals. Analyses in human cells and diabetic mice with cardiomyocyte-specific FOXO1 deletion showed that FOXO1 bound directly on the KLF5 promoter and increased KLF5 expression. Diabetic mice with cardiomyocyte-specific FOXO1 deletion had lower cardiac KLF5 expression and were protected from DbCM. Genetic, pharmacologic gain and loss of KLF5 function approaches and AAV-mediated Klf5 delivery in mice showed that KLF5 induces DbCM. Accordingly, the protective effect of cardiomyocyte FOXO1 ablation in DbCM was abolished when KLF5 expression was rescued. Similarly, constitutive cardiomyocyte-specific KLF5 overexpression caused cardiac dysfunction. KLF5 caused oxidative stress via direct binding on NADPH oxidase (NOX)4 promoter and induction of NOX4 expression. This was accompanied by accumulation of cardiac ceramides. Pharmacologic or genetic KLF5 inhibition alleviated superoxide formation, prevented ceramide accumulation and improved cardiac function in diabetic mice.
Conclusions:
Diabetes-mediated activation of cardiomyocyte FOXO1 increases KLF5 expression, which stimulates NOX4 expression, ceramide accumulation and causes DbCM.
Background
Sepsis is the overwhelming host response to infection leading to shock and multiple organ dysfunction. Cardiovascular complications greatly increase sepsis‐associated mortality. Although murine models are routinely used for preclinical studies, the benefit of using genetically engineered mice in sepsis is countered by discrepancies between human and mouse sepsis pathophysiology. Therefore, recent guidelines have called for standardization of preclinical methods to document organ dysfunction. We investigated the course of cardiac dysfunction and myocardial load in different mouse models of sepsis to identify the optimal measurements for early systolic and diastolic dysfunction.
Methods and Results
We performed speckle‐tracking echocardiography and assessed blood pressure, plasma inflammatory cytokines, lactate, B‐type natriuretic peptide, and survival in mouse models of endotoxemia or polymicrobial infection (cecal ligation and puncture, [
CLP
]) of moderate and high severity. We observed that myocardial strain and cardiac output were consistently impaired early in both sepsis models. Suppression of cardiac output was associated with systolic dysfunction in endotoxemia or combined systolic dysfunction and reduced preload in the
CLP
model. We found that cardiac output at 2 hours post‐
CLP
is a negative prognostic indicator with high sensitivity and specificity that predicts mortality at 48 hours. Using a known antibiotic (ertapenem) treatment, we confirmed that this approach can document recovery.
Conclusions
We propose a non‐invasive approach for assessment of cardiac function in sepsis and myocardial strain and strain rate as preferable measures for monitoring cardiovascular function in sepsis mouse models. We further show that the magnitude of cardiac output suppression 2 hours post‐
CLP
can be used to predict mortality.
Sepsis is the overwhelming systemic immune response to infection, which can result in multiple organ dysfunction and septic shock. Myocardial dysfunction during sepsis is associated with advanced disease and significantly increased in-hospital mortality. Our group has shown that energetic failure and excess reactive oxygen species (ROS) generation constitute major components of myocardial dysfunction in sepsis. Because ROS production is central to cellular *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.