Optoacoustic imaging relies on the detection of optically induced acoustic waves to offer new possibilities in morphological and functional imaging. As the modality matures towards clinical application, research efforts aim to address multifactorial limitations that negatively impact the resulting image quality. In an endeavor to obtain a clear view on the limitations and their effects, as well as the status of this progressive refinement process, we conduct an extensive search for optoacoustic image quality improvement approaches that have been evaluated with humans in vivo, thus focusing on clinically relevant outcomes. We query six databases (PubMed, Scopus, Web of Science, IEEE Xplore, ACM Digital Library, and Google Scholar) for articles published from 1 January 2010 to 31 October 2021, and identify 45 relevant research works through a systematic screening process. We review the identified approaches, describing their primary objectives, targeted limitations, and key technical implementation details. Moreover, considering comprehensive and objective quality assessment as an essential prerequisite for the adoption of such approaches in clinical practice, we subject 36 of the 45 papers to a further in-depth analysis of the reported quality evaluation procedures, and elicit a set of criteria with the intent to capture key evaluation aspects. Through a comparative criteria-wise rating process, we seek research efforts that exhibit excellence in quality assessment of their proposed methods, and discuss features that distinguish them from works with similar objectives. Additionally, informed by the rating results, we highlight areas with improvement potential, and extract recommendations for designing quality assessment pipelines capable of providing rich evidence.
Background Echocardiography (ECHO) is a type of ultrasonographic procedure for examining the cardiac function and morphology, with functional parameters of the left ventricle (LV), such as the ejection fraction (EF) and global longitudinal strain (GLS), being important indicators. Estimation of LV-EF and LV-GLS is performed either manually or semiautomatically by cardiologists and requires a nonnegligible amount of time, while estimation accuracy depends on scan quality and the clinician’s experience in ECHO, leading to considerable measurement variability. Objective The aim of this study is to externally validate the clinical performance of a trained artificial intelligence (AI)–based tool that automatically estimates LV-EF and LV-GLS from transthoracic ECHO scans and to produce preliminary evidence regarding its utility. Methods This is a prospective cohort study conducted in 2 phases. ECHO scans will be collected from 120 participants referred for ECHO examination based on routine clinical practice in the Hippokration General Hospital, Thessaloniki, Greece. During the first phase, 60 scans will be processed by 15 cardiologists of different experience levels and the AI-based tool to determine whether the latter is noninferior in LV-EF and LV-GLS estimation accuracy (primary outcomes) compared to cardiologists. Secondary outcomes include the time required for estimation and Bland-Altman plots and intraclass correlation coefficients to assess measurement reliability for both the AI and cardiologists. In the second phase, the rest of the scans will be examined by the same cardiologists with and without the AI-based tool to primarily evaluate whether the combination of the cardiologist and the tool is superior in terms of correctness of LV function diagnosis (normal or abnormal) to the cardiologist’s routine examination practice, accounting for the cardiologist’s level of ECHO experience. Secondary outcomes include time to diagnosis and the system usability scale score. Reference LV-EF and LV-GLS measurements and LV function diagnoses will be provided by a panel of 3 expert cardiologists. Results Recruitment started in September 2022, and data collection is ongoing. The results of the first phase are expected to be available by summer 2023, while the study will conclude in May 2024, with the end of the second phase. Conclusions This study will provide external evidence regarding the clinical performance and utility of the AI-based tool based on prospectively collected ECHO scans in the routine clinical setting, thus reflecting real-world clinical scenarios. The study protocol may be useful to investigators conducting similar research. International Registered Report Identifier (IRRID) DERR1-10.2196/44650
BACKGROUND Echocardiography (ECHO) is a type of ultrasound for examining cardiac function and morphology, with functional parameters of the left ventricle (LV), such as the ejection fraction (EF) and global longitudinal strain (GLS), being important indicators. Estimation of LV-EF and LV-GLS is performed either manually or semi-automatically by cardiologists and requires a non-negligible amount of time, while estimation accuracy depends on scan quality and the clinician’s experience in ECHO, leading to considerable measurement variability. OBJECTIVE The aim of this study is to externally validate the clinical performance of a trained AI-based tool that automatically estimates LV-EF and LV-GLS from transthoracic ECHO scans and to produce preliminary evidence regarding its utility. METHODS This is a prospective cohort study conducted in two phases. ECHO scans will be collected from 12O subjects referred for ECHO examination based on routine clinical practice in the Hippokration General Hospital, Thessaloniki, Greece. During the first phase, 60 scans will be processed by 15 cardiologists of different experience levels and the AI-based tool to determine whether the latter is non-inferior in LV-EF and LV-GLS estimation accuracy (primary outcomes) compared to cardiologists. Secondary outcomes include the time required for estimation and Bland-Altman plots and intra-class correlation coefficients to assess measurement reliability for both the AI and cardiologists. In the second phase, the rest of the scans will be examined by the same cardiologists with and without the AI-based tool to primarily evaluate whether the combination of the cardiologist and the tool is superior to the cardiologist alone in terms of LV function diagnosis correctness, accounting for the level of ECHO experience. Secondary outcomes include time to diagnosis and the system usability scale score. Reference LV-EF and LV-GLS measurements and LV function diagnoses will be provided by a panel of three expert cardiologists. RESULTS Recruitment started in September 2022 and data collection is ongoing. Results of the first phase are expected to be available by summer 2023, while the study will conclude in May 2024, with the end of the second phase. CONCLUSIONS This study will provide external evidence regarding the clinical performance and utility of the AI-based tool based on prospective data collected in real-world clinical scenarios. The study protocol may be useful to investigators conducting similar research. CLINICALTRIAL -
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.