Karlsruhe Institute of Technology (KIT) is doing research and development in the field of megawatt-class radio frequency (RF) sources (gyrotrons) for the Electron Cyclotron Resonance Heating (ECRH) systems of the International Thermonuclear Experimental Reactor (ITER) and the DEMOnstration Fusion Power Plant that will follow ITER. In the focus is the development and verification of the European coaxial-cavity gyrotron technology which shall lead to gyrotrons operating at an RF output power significantly larger than 1 MW CW and at an operating frequency above 200 GHz. A major step into that direction is the final verification of the European 170 GHz 2 MW coaxial-cavity pre-prototype at longer pulses up to 1 s. It bases on the upgrade of an already existing highly modular short-pulse (ms-range) pre-prototype. That pre-prototype has shown a world record output power of 2.2 MW already. This paper summarizes briefly the already achieved experimental results using the short-pulse pre-prototype and discusses in detail the design and manufacturing process of the upgrade of the pre-prototype toward longer pulses up to 1 s.
The European Gyrotron Consortium (EGYC) is developing the European 1 MW, 170 GHz Continuous Wave (CW) industrial prototype gyrotron for ITER in cooperation with Thales Electron Devices (TED) and Fusion for Energy (F4E). This conventional, hollow-cavity gyrotron, is based on the 1 MW, 170 GHz Short-Pulse (SP) modular gyrotron that has been designed and manufactured by the Karlsruhe Institute of Technology (KIT) in collaboration with TED. Both gyrotrons have been tested successfully in multiple experiments. In this work we briefly report on the results with the CW gyrotron at KIT and we focus at the experiments at the Swiss Plasma Center (SPC). In addition, we present preliminary results from various upgrades of the SP tube that are currently tested at KIT.
Multistage Depressed Collectors (MDCs) are nontrivial for high-frequency gyrotrons. A basic conceptual design of an E Â B MDC using azimuthal electric fields was proposed in Part I of this series. In the present work, several upgraded design proposals based on the basic one will be elaborated. These proposals will significantly reduce the back-stream of electrons, which was the main drawback of the basic design proposal. Another upgraded design proposal will shrink the length and maximal radius of the MDC to be only a fraction of its full-length version. A conceptual design of the final MDC proposal will be given at the end.Published under license by AIP Publishing. https://doi.
An iterative procedure is described, which models the influence of the thermal expansion of the gyrotron cavity on the expected gyrotron performance. It is a multi-physics simulation method, which involves electrodynamic, thermalhydraulic, and thermo-mechanical simulations. The method is applied to the first European 170 GHz, 1 MW Continuous Wave prototype gyrotron for ITER. According to the simulations, a performance reduction of ~15% is expected at nominal operating parameters, because of the thermal expansion of the cavity. Alternative operating points to mitigate this effect are proposed and numerically validated. The numerical results are discussed in the light of experimental findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.