The asymptotic behaviour of the variances and covariances of the class sizes in closed and open manpower systems is considered. Firstly, the homogeneous case is studied and a theorem is stated which provides the answer to the problem in the most general case for the homogeneous Markov-chain models in manpower systems (open systems) and social mobility models (closed systems). Secondly, the non-homogeneous problem is studied and a theorem is given where under certain conditions it is proved that the vector sequences of means, variances and covariances converge. Finally, we relate our theoretical results to examples from the literature on manpower planning.
The asymptotic behaviour of the variances and covariances of the class sizes in closed and open manpower systems is considered. Firstly, the homogeneous case is studied and a theorem is stated which provides the answer to the problem in the most general case for the homogeneous Markov-chain models in manpower systems (open systems) and social mobility models (closed systems). Secondly, the non-homogeneous problem is studied and a theorem is given where under certain conditions it is proved that the vector sequences of means, variances and covariances converge. Finally, we relate our theoretical results to examples from the literature on manpower planning.
In the present paper we study three aspects in the theory of non-homogeneous Markov systems under the continuous-time formulation. Firstly, the relationship between stability and quasi-stationarity is investigated and conditions are provided for a quasi-stationary structure to be stable. Secondly, the concept of asymptotic attainability is studied and the possible regions of asymptotically attainable structures are determined. Finally, the cyclic case is considered, where it is shown that for a system in a periodic environment, the relative structure converges to a periodic vector, independently of the initial distribution. Two numerical examples illustrate the above theoretical results.
Several methods are considered for the generation of a complete set of order statistics from a specified distribution. In the case of the uniform distribution, several methods in the literature are collected and reviewed. Three methods appropriate for general distributions are then described, with the normal and beta distributions considered as examples. The recommended method, which appears to be new, consists of dividing the range of the distribution into a large number of intervals and applying rejection sampling on each interval.
This paper presents a unified treatment of the convergence properties of nonhomogeneous Markov systems under different sets of assumptions. First the periodic case is studied and the limiting evolution of the individual cyclically moving subclasses of the state space of the associated Markov replacement chain is completely determined. A special case of the above result is the aperiodic or strongly ergodic convergence. Two numerical examples from the literature on manpower planning highlight the practical aspect of the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.