Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and an important source of vegetable protein, minerals, antioxidants, and bioactive compounds. The N2-fixation capacity of this crop reduces its demand for synthetic N fertilizer application to increase yield and quality. Fertilization, yield, and quality of common bean may be optimised by several other agronomic practices such as irrigation, rhizobia application, sowing density, etc. Taking this into consideration, a systematic review integrated with a bibliometric analysis of several agronomic practices that increase common bean yield and quality was conducted, based on the literature published during 1971–2021. A total of 250 publications were found dealing with breeding (n = 61), sowing density and season (n = 14), irrigation (n = 36), fertilization (n = 27), intercropping (n = 12), soilless culture (n = 5), tillage (n = 7), rhizobia application (n = 36), biostimulant/biofertilizer application (n = 21), disease management (n = 15), pest management (n = 2) and weed management (n = 14). The leading research production sites were Asia and South America, whereas from the Australian continent, only four papers were identified as relevant. The keyword co-occurrence network analyses revealed that the main topics addressed in relation to common bean yield in the scientific literature related to that of “pod”, “grain”, “growth”, “cultivar” and “genotype”, followed by “soil”, “nitrogen”, “inoculation”, “rhizobia”, “environment”, and “irrigation”. Limited international collaboration among scientists was found, and most reported research was from Brazil. Moreover, there is a complete lack in interdisciplinary interactions. Breeding for increased yield and selection of genotypes adapted to semi-arid environmental conditions combined with the suitable sowing densities are important agronomic practices affecting productivity of common bean. Application of fertilizers and irrigation practices adjusted to the needs of the plants according to the developmental stage and selection of the appropriate tillage system are also of high importance to increase common bean yield and yield qualities. Reducing N-fertilization via improved N-fixation through rhizobia inoculation and/or biostimulants application appeared as a main consideration to optimise crop performance and sustainable management of this crop. Disease and weed management practices appear neglected areas of research attention, including integrated pest management.
The aim of the current study was to contribute to the establishment of sustainable organic crop rotation schemes for common bean under mild-winter climatic conditions. Common bean was cultivated according to organic or conventional farming practices during spring-summer in two successive years with crop and treatment during the preceding winter as either: (a) organic broccoli, (b) conventional broccoli, (c) organic faba bean used as green manure, or (d) fallow. Common bean was either inoculated with Rhizobium tropici CIAT 899 or non-inoculated, while faba bean was inoculated or non-inoculated with Rhizobium laguerreae VFLE1. Inoculating faba bean with rhizobia enhanced dry biomass production and biological N-fixing ability in both experimental years. Furthermore, organic farming did not restrict the yield of broccoli compared to conventional practices during the first year, while the reverse was the case in the second year, due to reduced soil N availability. Furthermore, green manure enhanced the fresh pod yield in the following organic crop of common bean in both years. The lowest yield was recorded in organically grown common bean when the preceding winter crop was organically grown broccoli in both years. Rhizobia inoculation of the common bean during the first year slightly increased atmospheric N fixation by common bean.
Corn salad (Valerianella locusta) is a popular winter salad, cultivated as an ingredient for ready-to-eat salads. The application of mild salinity stress (eustress) can increase the flavor and reduce the nitrate content of certain crops but, at the same time, a wrong choice of the eustress type and dose can negatively affect the overall productivity. In this research, the effects of different isosmotic salt solutions, corresponding to two different electrical conductivity (EC) levels, were investigated on the yield and mineral composition of hydroponically grown Valerianella locusta “Elixir”. Five nutrient solutions (NS) were compared, including a basic NS used as the control, and four saline NS were obtained by adding to the basic NS either NaCl or CaCl2 at two rates each, corresponding to two isosmotic salt levels at a low and high EC level. Corn salad proved moderately susceptible to long-term salinity stress, suffering growth losses at both low and high EC levels of saline solution, except from the low NaCl treatment. Hence, it appears that mild salinity stress induced by NaCl could be employed as an eustress solution and corn salad could be cultivated with low-quality irrigation water (20 mM NaCl) in hydroponic systems.
Soilless crop production is spread worldwide. It is a cultivating technique that enhances yield quality and quantity, thus contributing to both food safety and food security. However, in closed-loop soilless crops, the risk of spreading soil-borne pathogens through the recycled nutrient solution makes the establishment of a disinfection strategy necessary. In the current study, sodium hypochlorite was applied to the recycled nutrient solution as a chemical disinfectant to assess its impact on plant growth, leaf gas exchange, fruit yield, tissue mineral composition, and possible accumulation of chlorate and perchlorate residues in tomato fruits. The application of 2.5, 5, and 7.5 mg L−1 of chlorine three times at fortnightly intervals during the cropping period had no impact on plant growth or gas exchange parameters. Furthermore, the application of 2.5 mg L−1 of chlorine led to a significant increase in the total production of marketable fruits (total fruit weight per plant). No consistent differences in nutrient concentrations were recorded between the treatments. Moreover, neither chlorate nor perchlorate residues were detected in tomato fruits, even though chlorate residues were present in the nutrient solution. Therefore, the obtained tomatoes were safe for consumption. Further research is needed to test the application of chlorine in combination with crop inoculation with pathogens to test the efficiency of chlorine as a disinfectant in soilless nutrient solutions.
The aim of the current study wat to comparatively assess the impact of different nitrogen (N) fertilization schemes on fresh pod yield and yield quality in either organically or conventionally grown common beans (Phaseolus vulgaris L.). Prior to common bean crop establishment, the experimental field site was cultivated following either organic (a) or conventional (b) farming practices with a winter non-legume crop (Brassica oleracea var. italica) (BR), or (c) with field bean (Vicia faba sp.) destined to serve as a green manure (GM) crop. At the end of the winter cultivation period the broccoli crop residues (BR) and green manure biomass (GM) were incorporated into the soil and the plots that accommodated the treatments (a) and (c) were followed by an organically cultivated common bean crop, while the conventional broccoli crop was followed by a conventionally cropped common bean crop. Additional to the plant residues (BR), sheep manure (SM) at a rate of 40 kg N ha−1 was also applied to the organically treated common beans, while the plots with a conventionally cropped common bean received 75 kg N ha−1. Organic common bean treated with SM + BR produced smaller pods of higher dry matter and bioactive compound content, responses that are correlated with limited soil N availability. No significant variations were observed on yield components and N levels of pods cultivated under organic (SM + GM) and conventional cropping systems. Pod sugar and starch content was not influenced by the different fertilization practices. In conclusion, we have demonstrated that the combined application of SM + GM can be considered as an efficient N-fertilisation strategy for organic crops of common bean, benefiting their nutritional value without compromising yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.