The use of mild steel/tempered glass adhesive joints has increased rapidly over recent years. Cohesive zone modelling (CZM) is used extensively for the numerical analysis and failure prediction of adhesive joints. The bonding to the glass surface is generally weaker than the bonding to metal substrates, and therefore the development of cohesive laws by testing on different substrates generally leads to overoptimistic and non-conservative predictions. However, the interface characterisation using standardised methods for glass/steel joints is complicated due to the relatively low strength of the glass substrate leading to premature failure. This paper presents modifications proposed for the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) tests bonded with dissimilar glass/steel adherends and used to extract traction-separation laws in fracture modes I and II. For this relatively small coupon size, an in-house glass heat strengthening process was developed. The cohesive laws were validated by comparing the numerical predictions for two different adhesives with experimental test data for double lap shear joints subjected to four different load cases.
Mild steel/tempered glass adhesive joints are becoming a common occurrence in the construction industry. A numerical parametric study for adhesive property optimisation is conducted and determines strength and ductility as the main parameters affecting the joint performance. Numerical simulations include adhesive pressuresensitivity, plasticity and failure modelling and are also used to further investigate onset and progression of damage leading to failure of the joints. Following this, the market of structural adhesives is scanned, resulting in the identification of an adhesive system that aligns with the 'optimal' strength and ductility parameters identified from the parametric study. The chosen adhesive system is experimentally compared and benchmarked against a brittle and a ductile adhesive in steel/glass adhesive joints subjected to four different load-cases. It is demonstrated that the proposed modelling methodology yields accurate predictions of the adhesive and adherend stress states and failure behaviour for the four different load-cases, thus highlighting the model's ability to predict the response and failure of all three adhesives and tempered glass.
This paper investigates the use of bolted and brittle/ductile adhesive connections in glass structures. Two benchmark designs of shear connections are introduced and tested experimentally in quasi-static tensile tests. The designs consist of tempered glass and aluminium substrates while steel splices are used for the load application. In addition, material characterisation testing for the glass and the adhesive is performed and the outputs are used for the numerical simulation of the same joints. Pressure-sensitive, plasticity and failure models are introduced and calibrated to accurately capture the behaviour of the adhesives. Good agreement between the experimental observations and numerical predictions is achieved. The results show that both types of adhesive joints outperform bolted joints while counter-intuitively the lower strength ductile adhesive achieves consistently higher joint strength compared to the brittle adhesive. The numerical analyses highlight
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.