In this paper, we introduce the probabilistic justification logic PJ, a logic in which we can reason about the probability of justification statements. We present its syntax and semantics, and establish a strong completeness theorem. Moreover, we investigate the relationship between PJ and the logic of uncertain justifications.
We present a probabilistic justification logic, PPJ, as a framework for uncertain reasoning about rational belief, degrees of belief and justifications. We establish soundness and strong completeness for PPJ with respect to the class of so-called measurable Kripke-like models and show that the satisfiability problem is decidable. We discuss how PPJ provides insight into the well-known lottery paradox.
The logic PJ is a probabilistic logic defined by adding (non-iterated) probability operators to the basic justification logic J. In this paper we establish upper and lower bounds for the complexity of the derivability problem in the logic PJ. The main result of the paper is that the complexity of the derivability problem in PJ remains the same as the complexity of the derivability problem in the underlying logic J, which is Π p 2 -complete. This implies hat the probability operators do not increase the complexity of the logic, although they arguably enrich the expressiveness of the language.1 J stands for justification, whereas PJ stands for probabilistic justification. 2 the two P's stand for iterations of the probability operator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.