The COVID-19 pandemic in 2020 has highlighted the need to pull all available resources towards the mitigation of the devastating effects of such “Black Swan” events. Towards that end, we investigated the option to employ technology in order to assist the diagnosis of patients infected by the virus. As such, several state-of-the-art pre-trained convolutional neural networks were evaluated as of their ability to detect infected patients from chest X-Ray images. A dataset was created as a mix of publicly available X-ray images from patients with confirmed COVID-19 disease, common bacterial pneumonia and healthy individuals. To mitigate the small number of samples, we employed transfer learning, which transfers knowledge extracted by pre-trained models to the model to be trained. The experimental results demonstrate that the classification performance can reach an accuracy of 95% for the best two models.
Due to the vast amount of available tracking sensors in recent years, high-frequency and high-volume streams of data are generated every day. The maritime domain is no different as all larger vessels are obliged to be equipped with a vessel tracking system that transmits their location periodically. Consequently, automated methodologies able to extract meaningful information from high-frequency, large volumes of vessel tracking data need to be developed. The automatic identification of vessel mobility patterns from such data in real time is of utmost importance since it can reveal abnormal or illegal vessel activities in due time. Therefore, in this work, we present a novel approach that transforms streaming vessel trajectory patterns into images and employs deep learning algorithms to accurately classify vessel activities in near real time tackling the Big Data challenges of volume and velocity. Two real-world data sets collected from terrestrial, vessel-tracking receivers were used to evaluate the proposed methodology in terms of both classification and streaming execution performance. Experimental results demonstrated that the vessel activity classification performance can reach an accuracy of over 96% while achieving sub-second latencies in streaming execution performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.