With the demand for renewable energy and efficient devices rapidly increasing, a need arises to find and optimize novel (nano)materials. With sheer limitless possibilities for material combinations and synthetic procedures, obtaining novel, highly functional materials has been a tedious trial and error process. Recently, machine learning has emerged as a powerful tool to help optimize syntheses; however, most approaches require a substantial amount of input data, limiting their pertinence. Here, three well‐known machine‐learning models are merged with Bayesian optimization into one to optimize the synthesis of CsPbBr3 nanoplatelets with limited data demand. The algorithm can accurately predict the photoluminescence emission maxima of nanoplatelet dispersions using only the three precursor ratios as input parameters. This allows us to fabricate previously unobtainable seven and eight monolayer‐thick nanoplatelets. Moreover, the algorithm dramatically improves the homogeneity of 2–6‐monolayer‐thick nanoplatelet dispersions, as evidenced by narrower and more symmetric photoluminescence spectra. Decisively, only 200 total syntheses are required to achieve this vast improvement, highlighting how rapidly material properties can be optimized. The algorithm is highly versatile and can incorporate additional synthetic parameters. Accordingly, it is readily applicable to other less‐explored nanocrystal syntheses and can help rapidly identify and improve exciting compositions’ quality.
Similar to how CRISPR has revolutionized the field of molecular biology, machine learning may drastically boost research in the area of materials science. Machine learning is a fastevolving method that allows for analyzing big data and unveiling correlations that otherwise would remain undiscovered. It may hold invaluable potential to engineer novel functional materials with desired properties, a field, which is currently limited by timeconsuming trial and error approaches and our limited understanding of how different material properties depend on each other. Here, we apply machine learning algorithms to classify complex biological materials based on their microtopography. With this approach, the surfaces of different variants of biofilms and plant leaves can not only be distinguished but also correctly classified according to their wettability. Furthermore, an importance ranking provided by one of the algorithms allows us to identify those surface features that are critical for a successful sample classification. Our study exemplifies how machine learning can contribute to the analysis and categorization of complex surfaces, a tool, which can be highly useful for other areas of materials science, such as damage assessment as well as adhesion or friction studies.
Structural health monitoring is spreading widely across engineering domains. Its added value is not restricted to observing structural behavior, but crosses over to enabling the assessment of structural integrity under varying operating conditions. Damage prognosis is one vital demand from structural health monitoring solutions. Many methods have been developed to update damage predictions based on sensor data, nonetheless the selection and positioning of sensors to alleviate the prediction errors remains a question under investigation. In this work, an optimal sensor placement method is proposed for fatigue damage prediction in structures. An optimization problem is formulated to minimize the a-posteriori damage estimation error based on a Kalman filter. The derivation of the objective function is presented, along with a discussion of algorithm-related issues. Finally, the mentioned damage prediction approach is applied to two structures to verify the adequacy of the sensor configurations proposed by the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.