A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids can be described by holography, that is, by mapping them onto a weakly curved gravitational theory via gauge/gravity duality. The canonical system considered for realizations has been graphene. In this work, we show that Kagome systems with electron fillings adjusted to the Dirac nodes provide a much more compelling platform for realizations of viscous electron fluids, including non-linear effects such as turbulence. In particular, we find that in Scandium Herbertsmithite, the fine-structure constant, which measures the effective Coulomb interaction, is enhanced by a factor of about 3.2 as compared to graphene. We employ holography to estimate the ratio of the shear viscosity over the entropy density in Sc-Herbertsmithite, and find it about three times smaller than in graphene. These findings put the turbulent flow regime described by holography within the reach of experiments.
In the context of describing electrons in solids as a fluid in the hydrodynamic regime, we consider a flow of electrons in a channel of finite width, i.e. a Poiseuille flow. The electrons are accelerated by a constant electric field. We develop the appropriate relativistic hydrodynamic formalism in 2+1 dimensions and show that the fluid has a finite dc conductivity due to boundary-induced momentum relaxation, even in the absence of impurities. We use methods involving the AdS/CFT correspondence to examine the system in the strong-coupling regime. We calculate and study velocity profiles across the channel, from which we obtain the differential resistance dV /dI. We find that dV /dI decreases with increasing current I as expected for a Poiseuille flow, also at strong coupling and in the relativistic velocity regime. Moreover, we vary the coupling strength by varying η/s, the ratio of shear viscosity over entropy density. We find that dV /dI decreases when the coupling is increased. We also find that strongly coupled fluids are more likely to become ultra-relativistic and turbulent. These conclusions are insensitive to the presence of impurities. In particular, we predict that in channels which are clearly in the hydrodynamic regime already at small currents, the DC channel resistance strongly depends on η/s. arXiv:1806.10635v2 [cond-mat.mes-hall] 9 Nov 2018
The breaking of parity and time-reversal symmetry in two-dimensional Fermi liquids gives rise to non-dissipative transport features characterized by the Hall viscosity. In magnetic fields, the Hall viscous force directly competes with the Lorentz force, since both mechanisms contribute to the Hall voltage. In this work, we present a channel geometry that allows us to uniquely distinguish these two contributions and derive, for the first time, their functional dependency on all external parameters. We show that the ratio of the Hall viscous to the Lorentz force contribution is negative and that its modulus decreases with increasing width, slip-length and carrier density, while it increases with the electron-electron mean free path of our channel. In typical materials such as GaAs the Hall viscous contribution can dominate the Lorentz signal up to a few tens of millitesla until the total Hall voltage vanishes and subsequently is overcome by the Lorentz contribution. Moreover, we prove that the total Hall electric field is parabolic due to Lorentz effects, whereas the offset of this parabola is characterized by the Hall viscosity. Hence, our results pave the way to measure and identify the Hall viscosity via both global and local voltage measurements. arXiv:1905.03269v3 [cond-mat.mes-hall]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.