The amorphous solid state offers an improved apparent solubility and dissolution rate. However, due to thermodynamic instability and recrystallization tendencies during processing, storage and dissolution, their potential application is limited. For this reason, the production of amorphous drugs with adequate stability remains a major challenge and formulation strategies based on solid molecular dispersions are being exploited. Co-amorphous systems are a new formulation approach where the amorphous drug is stabilized through strong intermolecular interactions by a low molecular co-former. This review covers several topics applicable to co-amorphous drug delivery systems. In particular, it describes recent advances in the co-amorphous composition, preparation and solid-state characterization, as well as improvements of dissolution performance and absorption are detailed. Examples of drug-drug, drug-carboxylic acid and drug-amino acid co-amorphous dispersions interacting via hydrogen bonding, π−π interactions and ionic forces, are presented together with corresponding final dosage forms.
Electrospinning (ES) is a convenient and versatile method for the fabrication of nanofibers and has been utilized in many fields including pharmaceutical and biomedical applications. Conventional ES uses a needle spinneret for the generation of nanofibers and is associated with many limitations and drawbacks (i.e., needle clogging, limited production capacity, and low yield). Needleless electrospinning (NLES) has been proposed to overcome these problems. Within the last two decades (2004–2020), many research articles have been published reporting the use of NLES for the fabrication of polymeric nanofibers intended for drug delivery and biomedical tissue engineering applications. The objective of the present mini-review article is to elucidate the potential of NLES for designing such novel nanofibrous drug delivery systems and tissue engineering constructs. This paper also gives an overview of the key NLES approaches, including the most recently introduced NLES method: ultrasound-enhanced electrospinning (USES). The technologies underlying NLES systems and an evaluation of electrospun nanofibers are presented. Even though NLES is a promising approach for the industrial production of nanofibers, it is a multivariate process, and more research work is needed to elucidate its full potential and limitations.
Self-emulsifying oil/surfactant mixtures can be incorporated into pellets that have the advantages of the oral administration of both microemulsions and a multiple-unit dosage form. The purpose of this work was to study the effects of surfactant hydrophilic-lipophilic balance (HLB) and oil/surfactant ratio on the formation and properties of self-emulsifying microcrystalline cellulose (MCC) pellets and microemulsion reconstitution. Triglycerides (C(8)-C(10)) was the oil and Cremophor ELP and RH grades and Solutol the surfactants. Pellets were prepared by extrusion/spheronization using microemulsions with fixed oil/surfactant content but with different water proportions to optimize size and shape parameters. Microemulsion reconstitution from pellets suspended in water was evaluated by turbidimetry and light scattering size analysis, and H-bonding interactions of surfactant with MCC from FT-IR spectra. It was found that water requirements for pelletization increased linearly with increasing HLB. Crushing load decreased and deformability increased with increasing oil/surfactant ratio. Incorporation of higher HLB surfactants enhanced H-bonding and resulted in faster and more extensive disintegration of MCC as fibrils. Reconstitution was greater at high oil/surfactant ratios and the droplet size of the reconstituted microemulsions was similar to that in the wetting microemulsions. The less hydrophilic ELP with a double bond in the fatty acid showed weaker H-bonding and greater microemulsion reconstitution. Purified ELP gave greater reconstitution than the unpurified grade. Thus, the work demonstrates that the choice of type and quantity of the surfactant used in the formulation of microemulsions containing pellets has an important influence on their production and performance.
In recent years there has been increased interest in the production of novel functional foods by utilizing eco-friendly materials and methods. Therefore, the present study was undertaken to determine the effects of dietary spirulina (Spirulina platensis), a blue-green microalga, on growth performance, meat oxidative stability and fatty acid profile of broiler chickens. One hundred and twenty one-day-old broiler chickens of mixed sex were weighed individually and assigned randomly to three treatment groups with four replications of 10 birds. All birds were housed in floor cages with litter, and conventional breeding and management procedures were applied throughout the 42-day trial period. The treatment groups were as follows: control: 0 g spirulina/kg feed; S05: 5 g spirulina/kg feed; S10: 10 g spirulina/kg feed. The birds were fed with maize and soybean meal-based commercial diets for the starter (1 to 14 days), grower (15 to 28 days) and finisher (29 to 42 days) periods. Feed and drinking water were offered to all birds ad libitum. The results of the experiment showed that bodyweight gain (at 21 d and 42 d), feed conversion ratio and mortality did not differ among the groups, nor did breast and thigh meat lipid oxidation differ among the groups. The fatty acid profile of the thigh meat was enriched in polyunsaturated fatty acids, especially eicosapentaenoic acid and docosahexaenoic acid after spirulina supplementation. Therefore, spirulina could be a promising functional ingredient in broiler chicken nutrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.