In this paper, we ask a question whether convolutional neural networks are more suitable for SCA scenarios than some other machine learning techniques, and if yes, in what situations. Our results point that convolutional neural networks indeed outperforms machine learning in several scenarios when considering accuracy. Still, often there is no compelling reason to use such a complex technique. In fact, if comparing techniques without extra steps like preprocessing, we see an obvious advantage for convolutional neural networks only when the level of noise is small, and the number of measurements and features is high. The other tested settings show that simpler machine learning techniques, for a significantly lower computational cost, perform similar or even better. The experiments with the guessing entropy metric indicate that simpler methods like Random forest or XGBoost perform better than convolutional neural networks for the datasets we investigated. Finally, we conduct a small experiment that opens the question whether convolutional neural networks are actually the best choice in side-channel analysis context since there seems to be no advantage in preserving the topology of measurements.
We devised a mobile biometric-based authentication system only relying on local processing. Our Android open source solution explores the capability of current smartphones to acquire, process and match fingerprints using only its built-in hardware. Our architecture is specifically designed to run completely locally and autonomously, not requiring any cloud service, server, or permissioned access to fingerprint reader hardware. It involves three main stages, starting with the fingerprint acquisition using the smartphone camera, followed by a processing pipeline to obtain minutiae features and a final step for matching against other locally stored fingerprints, based on Oriented FAST and Rotated BRIEF (ORB) descriptors. We obtained a mean matching accuracy of 55%, with the highest value of 67% for thumb fingers. Our ability to capture and process a finger fingerprint in mere seconds using a smartphone makes this work usable in a wide range of scenarios, for instance, offline remote regions. This work is specifically designed to be a key building block for a self-sovereign identity solution and integrate with our permissionless blockchain for identity and key attestation.
Music content annotation campaigns are common on paid crowdsourcing platforms. Crowd workers are expected to annotate complicated music artefacts, which can demand certain skills and expertise. Traditional methods of participant selection are not designed to capture these kind of domain-specific skills and expertise, and often domain-specific questions fall under the general demographics category. Despite the popularity of such tasks, there is a general lack of deeper understanding of the distribution of musical properties - especially auditory perception skills - among workers. To address this knowledge gap, we conducted a user study (N=100) on Prolific. We asked workers to indicate their musical sophistication through a questionnaire and assessed their music perception skills through an audio-based skill test. The goal of this work is to better understand the extent to which crowd workers possess higher perceptions skills, beyond their own musical education level and self reported abilities. Our study shows that untrained crowd workers can possess high perception skills on the music elements of melody, tuning, accent and tempo; skills that can be useful in a plethora of annotation tasks in the music domain.
Music content annotation campaigns are common on paid crowdsourcing platforms. Crowd workers are expected to annotate complex music artifacts, a task often demanding specialized skills and expertise, thus selecting the right participants is crucial for campaign success. However, there is a general lack of deeper understanding of the distribution of musical skills, and especially auditory perception skills, in the worker population. To address this knowledge gap, we conducted a user study (N = 200) on Prolific and Amazon Mechanical Turk. We asked crowd workers to indicate their musical sophistication through a questionnaire and assessed their music perception skills through an audio-based skill test. The goal of this work is to better understand the extent to which crowd workers possess higher perceptions skills, beyond their own musical education level and self reported abilities. Our study shows that untrained crowd workers can possess high perception skills on the music elements of melody, tuning, accent, and tempo; skills that can be useful in a plethora of annotation tasks in the music domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.