SUMMARY The histone H3K27 methyltransferase EZH2 plays an important role in oncogenesis, by mechanisms that are incompletely understood. Here we show that the JmjC domain histone H3 demethylase NDY1 synergizes with EZH2 to silence the EZH2 inhibitor miR-101. NDY1 and EZH2 repress miR-101 by binding its promoter in concert, via a process triggered by upregulation of NDY1. Whereas EZH2 binding depends on NDY1, the latter binds independently of EZH2. However, both are required to repress transcription. NDY1 and EZH2 acting in concert, upregulate EZH2 and stabilize the repression of miR-101 and its outcome. NDY1 is induced by FGF-2 via CREB phosphorylation and activation, downstream of DYRK1A, and mediates the FGF-2 and EZH2 effects on cell proliferation, migration and angiogenesis. The FGF-2-NDY1/EZH2-miR-101-EZH2 axis described here, was found to be active in bladder cancer. These data delineate a novel oncogenic pathway that functionally links FGF-2 with EZH2 via NDY1 and miR-101.
The three Akt isoforms are functionally distinct. Here we show that their phosphoproteomes also differ, suggesting that their functional differences are due to differences in target specificity. One of the top cellular functions differentially-regulated by Akt isoforms is RNA processing. IWS1, an RNA processing regulator, is phosphorylated by Akt3 and Akt1 at Ser720/Thr721. The latter is required for the recruitment of SETD2 to the RNA Pol II complex. SETD2 trimethylates histone H3 at K36 during transcription, creating a docking site for MRG15 and PTB. H3K36me3-bound MRG15 and PTB regulate FGFR-2 splicing, which controls tumor growth and invasiveness downstream of IWS1 phosphorylation. 21/24 non-small-cell-lung carcinomas we analyzed, express IWS1. More important, the stoichiometry of IWS1 phosphorylation in these tumors correlates with the FGFR-2 splicing pattern, and with Akt phosphorylation and Akt3 expression. These data identify a novel Akt isoform-dependent regulatory mechanism for RNA processing and demonstrate its role in lung cancer.
The combination of CDK4/6 inhibitors with antiestrogen therapies signifi cantly improves clinical outcomes in ER-positive advanced breast cancer. To identify mechanisms of acquired resistance, we analyzed serial biopsies and rapid autopsies from patients treated with the combination of the CDK4/6 inhibitor ribociclib with letrozole. This study revealed that some resistant tumors acquired RB loss, whereas other tumors lost PTEN expression at the time of progression. In breast cancer cells, ablation of PTEN , through increased AKT activation, was suffi cient to promote resistance to CDK4/6 inhibition in vitro and in vivo. Mechanistically, PTEN loss resulted in exclusion of p27 from the nucleus, leading to increased activation of both CDK4 and CDK2. Because PTEN loss also causes resistance to PI3Kα inhibitors, currently approved in the post-CDK4/6 setting, these fi ndings provide critical insight into how this single genetic event may cause clinical crossresistance to multiple targeted therapies in the same patient, with implications for optimal treatmentsequencing strategies. SIGNIFICANCE: Our analysis of serial biopsies uncovered RB and PTEN loss as mechanisms of acquired resistance to CDK4/6 inhibitors, utilized as fi rst-line treatment for ER-positive advanced breast cancer. Importantly, these fi ndings have near-term clinical relevance because PTEN loss also limits the effi cacy of PI3Kα inhibitors currently approved in the post-CDK4/6 setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.