The basic concepts for exoskeletal systems have been suggested for some time with applications ranging from construction, manufacturing and mining to rescue and emergency services. In recent years, research has been driven by possible uses in medical/rehabilitation and military applications. Yet there are still significant barriers to the effective use and exploitation of this technology. Among the most pertinent of these factors is the power and actuation system and its impact of control, strength, speed and, perhaps most critically, safety. This work describes the design, construction and testing of an ultra low-mass, full-body exoskeleton system having seven degrees of freedom (DOFs) for the upper limbs and five degrees of freedom (DOFs) for each of the lower limbs. This low mass is primarily due to the use of a new range of pneumatic muscle actuators as the power source for the system. The work presented will show how the system takes advantage of the inherent controllable compliance to produce a unit that is powerful, providing a wide range of functionality (motion and forces over an extended range) in a manner that has high safety integrity for the user. The general layout of both the upper and the lower body exoskeleton is presented together with results from preliminary experiments to demonstrate the potential of the device in limb retraining, rehabilitation and power assist (augmentation) operations.
This paper presents the development of a compact tactile display and its integration in teleoperation. The system's operation is based on the display of surface shape to an area of the fingertip through a 4 × 4 array of tactors moving perpendicularly to the skin surface. The tactors are spring loaded and are actuated remotely by dc motors through a flexible tendon transmission. This novel implementation of conventional actuation principles achieves a compact design with superior performance compared to devices of a similar footprint, demonstrating an excellent combination of tactor spatiotemporal resolution, force, and amplitude. The display's ergonomic design and high performance make it suitable for integration on haptic devices for tactile feedback in VR and in Teleoperation. This paper presents the design, control, and performance of the tactile display and of the transmission system. It also demonstrates its integration on an Omega7 force feedback device for the teleoperation of an LWR KUKA manipulator. An experiment is presented where users teleoperated the stylus of the robot in a 3D contour following task with and without tactile feedback. In this experiment, force feedback from the slave is fused with model-based local tactile feedback. Subjects' performances indicate an improvement in teleoperation when both tactile and force feedback are present.
Absfmd-Hand therapy is B major sector of physiotherapy and one of great importance. The impairment of the hand and generally of the upper limbs can be the cause of social and financial hardship and a serious cause of physical and emotional deterioration. Major efforts are directed Into developing therapy methods and procedures in order to standardise and therefore soccessfnlly apply treatment regimes in a wide scale. Although, the lack of scientific measurements of statistical value that the current methods suffer due to the mostly empirical natnre of examination, wessment and treatment does not assist this endeavour. This paper presents an exoskeleton based system for the physical and occupational therapy of the hand io an interactive VR environment. This system enhances the existing therapy methods with the introduction of accurate and repealable linger motion and farce measurement, interactivity, potential for great exercise assortment and statistical regisbstioa pad evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.