Background and Objective Prostate cancer (PCa) is a severe public health issue and the most common cancer worldwide in men. Early diagnosis can lead to early treatment and long-term survival. The addition of the multiparametric magnetic resonance imaging in combination with ultrasound (mpMRI-U/S fusion) biopsy to the existing diagnostic tools improved prostate cancer detection. Use of both tools gradually increases in every day urological practice. Furthermore, advances in the area of information technology and artificial intelligence have led to the development of software platforms able to support clinical diagnosis and decision-making using patient data from personalized medicine. Methods We investigated the current aspects of implementation, architecture, and design of a health care information system able to handle and store a large number of clinical examination data along with medical images, and produce a risk calculator in a seamless and secure manner complying with data security/accuracy and personal data protection directives and standards simultaneously. Furthermore, we took into account interoperability support and connectivity to legacy and other information management systems. The platform was implemented using open source, modern frameworks, and development tools. Results The application showed that software platforms supporting patient follow-up monitoring can be effective, productive, and of extreme value, while at the same time, aiding toward the betterment medicine clinical workflows. Furthermore, it removes access barriers and restrictions to specialized care, especially for rural areas, providing the exchange of medical images and patient data, among hospitals and physicians. Conclusion This platform handles data to estimate the risk of prostate cancer detection using current state-of-the-art in eHealth systems and services while fusing emerging multidisciplinary and intersectoral approaches. This work offers the research community an open architecture framework that encourages the broader adoption of more robust and comprehensive systems in standard clinical practice.
Motivation Hidden Markov Models (HMMs) are probabilistic models widely used in applications in computational sequence analysis. HMMs are basically unsupervised models. However, in the most important applications, they are trained in a supervised manner. Training examples accompanied by labels corresponding to different classes are given as input and the set of parameters that maximize the joint probability of sequences and labels is estimated. A main problem with this approach is that, in the majority of the cases, labels are hard to find and thus the amount of training data is limited. On the other hand, there are plenty of unclassified (unlabeled) sequences deposited in the public databases that could potentially contribute to the training procedure. This approach is called semi-supervised learning and could be very helpful in many applications. Results We propose here, a method for semi-supervised learning of HMMs that can incorporate labeled, unlabeled and partially labeled data in a straightforward manner. The algorithm is based on a variant of the Expectation-Maximization (EM) algorithm, where the missing labels of the unlabeled or partially labeled data are considered as the missing data. We apply the algorithm to several biological problems, namely, for the prediction of transmembrane protein topology for alpha-helical and beta-barrel membrane proteins and for the prediction of archaeal signal peptides. The results are very promising, since the algorithms presented here can significantly improve the prediction performance of even the top-scoring classifiers. Supplementary information Supplementary data are available at Bioinformatics online.
OMPdb (www.ompdb.org) was introduced as a database for β-barrel outer membrane proteins from Gram-negative bacteria in 2011 and then included 69,354 entries classified into 85 families. The database has been updated continuously using a collection of characteristic profile Hidden Markov Models able to discriminate between the different families of prokaryotic transmembrane β-barrels. The number of families has increased ultimately to a total of 129 families in the current, second major version of OMPdb. New additions have been made in parallel with efforts to update existing families and add novel families. Here, we present the upgrade of OMPdb, which from now on aims to become a global repository for all transmembrane β-barrel proteins, both eukaryotic and bacterial.
Abstract-Cervical cancer (CxCa) is one of the commonest reasons of women's mortality, although it can be prevented and treated if diagnosed early. Key to this is the regular examination with the test Papanikolaou but nowadays also with ancillary molecular biology tests. In this paper the authors present aspects of the architecture, design and implementation of the HPVGuard information system, a software platform capable to store and handle a multitude of medical examination data along with nonmedical information. HPVGuard integrates artificial intelligence models that combine data from different medical examinations and produce an estimation of women's risk to develop CxCa. The application of HPVGuard proved that computerized systems supporting women control can be of extreme value. This is nowadays feasible via the use of inexpensive tools and can be made available to the end users as a web service on standard computers as well as on a variety of mobile terminals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.