Mitochondrial DNA is transmitted maternally in metazoan species. This rule does not hold in several species of bivalves that have two mtDNA types, one that is transmitted maternally and the other paternally. This system of mitochondrial DNA transmission is known as doubly uniparental inheritance (DUI). Here we present evidence of DUI in the clam Donax trunculus making Donacidae the sixth bivalve family in which the phenomenon has been found. In addition, we present the taxonomic affiliation of all species in which DUI is currently known to occur and construct a phylogeny of the maternal and paternal genomes of these species.We use this information to address the question of a single or multiple origins of DUI and to discuss whether failed attempts to demonstrate the presence of DUI in several bivalve species might be due to problems of detection or to genuine absence of the phenomenon.KEY WORDS: Biparental inheritance, bivalve mitochondrial DNA, origin of DUI, reversal of transmission route, Tellinoidea.
BackgroundEvolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of ‘reproductive assurance’ suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans.ResultsWe show that self-compatible hermaphrodites provide reproductive assurance to a male-female population facing a novel environment where outcrossing is limiting. Invasions of hermaphrodites in male-female populations, and subsequent experimental evolution in the novel environment, led to successful transitions to selfing and adaptation. Adaptation was not due to the loss of males during transitions, as shown by evolution experiments in exclusively hermaphroditic populations and in male-hermaphrodite populations. Instead, adaptation was due to the displacement of females by hermaphrodites. Genotyping of single-nucleotide polymorphisms further indicated that the observed evolution of selfing rates was not due to selection of standing genetic diversity. Finally, numerical modelling and evolution experiments in male-female populations demonstrate that the improvement of male fitness components may diminish the opportunity for reproductive assurance.ConclusionsOur findings support the hypothesis that reproductive assurance can drive the transition from outcrossing to selfing, and further suggest that the success of transitions to selfing hinges on adaptation of obligate outcrossing populations to the environment where outcrossing was once a limiting factor.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-014-0093-1) contains supplementary material, which is available to authorized users.
Plant growth promoting rhizobacteria have been proposed as effective biocontrol agents against several fungal and bacterial plant pathogens. However, there is limited knowledge regarding their effect against viruses. In this study, Bacillus amyloliquefaciens strain MBI600 (MBI600), active ingredient of the biological fungicide Serifel® (BASF SE), was tested for its antiviral action in tomato plants. Drench, foliar or soil amendment applications of MBI600 reduced up to 80% the incidence of Tomato spotted wilt virus under two different sets of environmental conditions. In addition, drench application of MBI600 delayed Potato virus Y systemic accumulation. Transcriptional analysis of a range of genes associated with salicylic acid (SA)- or jasmonic acid - related defense, priming or basal defense against viruses, revealed the induction of the SA signaling pathway in tomato after MBI600 treatment, and discrete gene expression patterns in plant response to TSWV and PVY infection.
Species of the mussel family Mytilidae have a special mitochondrial DNA (mtDNA) transmission system, known as doubly uniparental inheritance (DUI), which consists of a maternally inherited (F) and a paternally inherited (M) mitochondrial genome. Females are normally homoplasmic for the F genome and males are heteroplasmic mosaics, with their somatic tissues dominated by the maternal and their gonads dominated by the paternal genome. Several studies have indicated that the maternal genome may often be present in the male germ line. Here we report the results from the examination of mtDNA in pure sperm from more than 30 males of Mytilus galloprovincialis . In all cases, except one, we detected only the M genome. In the sperm of one male, we detected a paternal genome with an F-like primary sequence that was different from the sequence of the maternal genome in the animal's somatic tissues. We conclude that the male germ line is protected against invasion by the maternal genome. This is important because fidelity of gamete-specific transmission of the two mitochondrial genomes is a basic requirement for the stability of DUI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.