Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 10(5)) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics.
Suspended monolayer transition metal dichalcogenides (TMD) are membranes that combine ultralow mass and exceptional optical properties, making them intriguing materials for opto-mechanical applications. However, the low measured quality factor of TMD resonators has been a roadblock so far. Here, we report an ultrasensitive optical readout of monolayer TMD resonators that allows us to reveal their mechanical properties at cryogenic temperatures. We find that the quality factor of monolayer WSe2 resonators greatly increases below room temperature, reaching values as high as 1.6 × 104 at liquid nitrogen temperature and 4.7 × 104 at liquid helium temperature. This surpasses the quality factor of monolayer graphene resonators with similar surface areas. Upon cooling the resonator, the resonant frequency increases significantly due to the thermal contraction of the WSe2 lattice. These measurements allow us to experimentally study the thermal expansion coefficient of WSe2 monolayers for the first time. High Q-factors are also found in resonators based on MoS2 and MoSe2 monolayers. The high quality-factor found in this work opens new possibilities for coupling mechanical vibrational states to two-dimensional excitons, valley pseudospins, and single quantum emitters and for quantum opto-mechanical experiments based on the Casimir interaction.
In just 20 years of history, the field of optomechanics has achieved impressive progress, stepping into the quantum regime just 5 years ago. Such remarkable advance relies on the technological revolution of nano-optomechanical systems, whose sensitivity towards thermal decoherence is strongly limited due to their ultra-low mass. Here we report a hybrid approach pushing nano-optomechanics to even lower scales. The concept relies on synthesising an efficient optical scatterer at the tip of singly clamped carbon nanotube resonators. We demonstrate high signal-to-noise motion readout and record force sensitivity, two orders of magnitude below the state of the art. Our work opens the perspective to extend quantum experiments and applications at room temperature.
Mechanical resonators based on low-dimensional materials provide a unique platform for exploring a broad range of physical phenomena. The mechanical vibrational states are indeed extremely sensitive to charges, spins, photons, and adsorbed masses. However, the roadblock is often the readout of the resonator, because the detection of the vibrational states becomes increasingly difficult for smaller resonators. Here, we report an unprecedentedly sensitive method to detect nanotube resonators with effective masses in the 10–20 kg range. We use the beam of an electron microscope to resolve the mechanical fluctuations of a nanotube in real-time for the first time. We obtain full access to the thermally driven Brownian motion of the resonator, both in space and time domains. Our results establish the viability of carbon nanotube resonator technology at room temperature and pave the way toward the observation of novel thermodynamics regimes and quantum effects in nanomechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.