Co-infections have an unknown impact on the morbidity and mortality of the new clinical syndrome called coronavirus disease 2019 (COVID-19). The syndrome is caused by the new pandemic coronavirus SARS-CoV-2 and it is probably connected with severe traces in the elements of the immune system. Apart from possible Aspergillus infections, particularly in patients with acute respiratory distress syndrome (ARDS), other fungal infections could occur, probably more easily, due to the immunological dysregulation and the critical condition of these patients. Probiotic preparations of Saccharomyces are broadly used for the prevention of antibiotic-associated complications, especially in the intensive care units (ICU). On the other hand, Saccharomyces organisms are reported as agents of invasive infection in immunocompromised or critically ill patients. We report two cases of bloodstream infection by Saccharomyces in two patients hospitalised in the ICU, due to severe COVID-19, after Saccharomyces supplementation.
BackgroundHypertrophic cardiomyopathy (HCM) is a common inherited cardiac disease characterized by varying degrees of left ventricular outflow tract obstruction. In a large cohort, we compare the outcomes among 3 different hemodynamic groups.Methods and ResultsWe prospectively enrolled patients fulfilling standard diagnostic criteria for HCM from January 2005 to June 2015. Detailed phenotypic characterization, including peak left ventricular outflow tract pressure gradients at rest and after provocation, was measured by echocardiography. The primary outcome was a composite cardiovascular end point, which included new‐onset atrial fibrillation, new sustained ventricular tachycardia/ventricular fibrillation, new or worsening heart failure, and death. The mean follow‐up was 3.4±2.8 years. Among the 705 patients with HCM (mean age, 52±15 years; 62% men), 230 with obstructive HCM were older and had a higher body mass index and New York Heart Association class. The 214 patients with nonobstructive HCM were more likely to have a history of sustained ventricular tachycardia/ventricular fibrillation and implantable cardioverter defibrillator implantation. During follow‐up, 121 patients experienced a composite cardiovascular end point. Atrial fibrillation occurred most frequently in the obstructive group. Patients with nonobstructive HCM had more frequent sustained ventricular tachycardia/ventricular fibrillation events. In multivariate analysis, obstructive (hazard ratio, 2.80; 95% confidence interval, 1.64–4.80) and nonobstructive (hazard ratio, 1.94; 95% confidence interval, 1.09–3.45) HCM were associated with more adverse events compared with labile HCM.ConclusionsNonobstructive HCM carries notable morbidity, including a higher arrhythmic risk than the other HCM groups. Patients with labile HCM have a relatively benign clinical course. Our data suggest detailed sudden cardiac death risk stratification in nonobstructive HCM and monitoring with less aggressive management in labile HCM.
BackgroundRecognition of cardiomyopathy in sepsis can be challenging due to the limitations of conventional measures such as ejection fraction (EF) and fractional shortening (FS) in the context of variable preload and afterload conditions. This study correlates myocardial function using strain echocardiography (SE) with cardiomyocyte oxidative stress in a murine model of sepsis.MethodsC57BL/6J mice were randomized into control (n = 10), sham (n = 25), and a cecal ligation and puncture (CLP) (n = 33) model of sepsis. Echocardiography was performed pre-, 12, 24, and 48 h post-injury. Cardiac pro-inflammatory cytokines and mitochondrial redox scavenger expression were evaluated in a subset of each arm. To evaluate the influence of redox scavenger upregulation on oxidative injury and cardiac function, CLP was performed on mitochondrial catalase-upregulated C57BL/6J MCAT+/+ mice (n = 12) and wild-type (WT) animals for comparison.ResultsSeptic C57BL/6J mice exhibited depressed longitudinal strain (LS) when compared to sham and control at 24 h (p < 0.01) and 48 h (p = 0.04) post-CLP despite having a preserved EF. Furthermore, there was a significant association between increased odds of mortality and depressed LS (OR = 1.23, p = 0.04). Septic C57BL/6J mice concomitantly demonstrated increased expression of cardiomyocyte pro-inflammatory cytokines and decreased expression of redox scavengers at 24 and 48 h.When comparing C57Bl/6 MCAT+/+ mice and C57BL/6J WT mice, a significant decrease in LS was identified in the WT mice at 24 h (MCAT = −23 ± 5% vs. WT = −15 ± 4% p < 0.01) and 48 h (MCAT = −23 ± 7% vs. WT = −15 ± 4.3% p = 0.04) post-CLP which correlated with significant increase in the level of cardiac oxidative stress following CLP.ConclusionsIn this sepsis model, SE identified cardiomyopathy despite normal EF. SE depression temporally coincides with upregulation of inflammatory cytokines and decreases expression of key mitochondrial ROS scavengers. Upregulation of redox scavenger (CAT) abrogates oxidative stress and cardiac dysfunction in this sepsis model.Electronic supplementary materialThe online version of this article (doi:10.1186/s40635-017-0134-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.