Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1–2 mm and with 10–50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named “MIDA”. The model was obtained by integrating three different magnetic resonance imaging (MRI) modalities, the parameters of which were tailored to enhance the signals of specific tissues: i) structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii) magnetic resonance angiography (MRA) data to image the vasculature, and iii) diffusion tensor imaging (DTI) to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.
Lungs represent the essential part of the mammalian respiratory system, which is reflected in the fact that lung failure still is one of the leading causes of morbidity and mortality worldwide. Establishing the connection between macroscopic observations of inspiration and expiration and the processes taking place at the microscopic scale remains crucial to understand fundamental physiological and pathological processes. Here we demonstrate for the first time in vivo synchrotron-based tomographic imaging of lungs with pixel sizes down to a micrometer, enabling first insights into high-resolution lung structure. We report the methodological ability to study lung inflation patterns at the alveolar scale and its potential in resolving still open questions in lung physiology. As a first application, we identified heterogeneous distension patterns at the alveolar level and assessed first comparisons of lungs between the in vivo and immediate post mortem states.
Summary In modern microscopy, the field of view is often increased by obtaining an image mosaic, where multiple sub-images are taken side-by-side and combined post-acquisition. Mosaic imaging often leads to long imaging times that can increase the probability of sample deformation during the acquisition due to, e.g. changes in the environment, damage caused by the radiation used to probe the sample or biologically induced deterioration. Here we propose a technique, based on local phase correlation, to detect the deformations and construct an artifact-free image mosaic from deformed sub-images. The implementation of the method supports distributed computing and can be used to generate teravoxel-size mosaics. We demonstrate its capabilities by assembling a 5.6 teravoxel tomographic image mosaic of microvasculature in whole mouse brain. The method is compared to existing rigid stitching implementations designed for very large datasets, and observed to create artifact-free image mosaics in comparable runtime with the same hardware resources. Availability and implementation The stitching software and C++/Python source code are available at GitHub (https://github.com/arttumiettinen/pi2) along with an example dataset and user instructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.