The novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has engulfed the world, affecting more than 180 countries. As a result, there has been considerable economic distress globally and a significant loss of life. Sadly, the vulnerable and immunocompromised in our societies seem to be more susceptible to severe COVID-19 complications. Global public health bodies and governments have ignited strategies and issued advisories on various handwashing and hygiene guidelines, social distancing strategies, and, in the most extreme cases, some countries have adopted “stay in place” or lockdown protocols to prevent COVID-19 spread. Notably, there are several significant risk factors for severe COVID-19 infection. These include the presence of poor nutritional status and pre-existing noncommunicable diseases (NCDs) such as diabetes mellitus, chronic lung diseases, cardiovascular diseases (CVD), obesity, and various other diseases that render the patient immunocompromised. These diseases are characterized by systemic inflammation, which may be a common feature of these NCDs, affecting patient outcomes against COVID-19. In this review, we discuss some of the anti-inflammatory therapies that are currently under investigation intended to dampen the cytokine storm of severe COVID-19 infections. Furthermore, nutritional status and the role of diet and lifestyle is considered, as it is known to affect patient outcomes in other severe infections and may play a role in COVID-19 infection. This review speculates the importance of nutrition as a mitigation strategy to support immune function amid the COVID-19 pandemic, identifying food groups and key nutrients of importance that may affect the outcomes of respiratory infections.
Several bioactives from fruit juices and beverages like phenolics, nucleotides and polar lipids (PL) have exhibited anti-platelet cardio-protective properties. However, apple juice and cider lipid bioactives have not been evaluated so far. The aim of this study was to investigate the anti-platelet and anti-inflammatory effects and structure activity relationships of Irish apple juice and Real Irish cider lipid bioactives against the platelet-activating factor (PAF)- and adenosine diphosphate (ADP)-related thrombotic and inflammatory manifestations in human platelets. Total Lipids (TL) were extracted from low, moderate and high in tannins apple juices and from their derived-through-fermentation cider products, as well as from commercial apple juice and cider. These were separated into neutral lipids (NL) and PL, while all lipid extracts were further assessed for their ability to inhibit aggregation of human platelets induced by PAF and ADP. In all cases, PL exhibited the strongest anti-platelet bioactivities and were further separated by high-performance liquid chromatography (HPLC) analysis into PL subclasses/fractions that were also assessed for their antiplatelet potency. The PL from low in tannins apple juice exhibited the strongest antiplatelet effects against PAF and ADP, while PL from its fermented cider product were less active. Moreover, the phosphatidylcholines (PC) in apple juices and the phosphatidylethanolamines (PE) in apple ciders were the most bioactive HPLC-derived PL subclasses against PAF-induced platelet aggregation. Structural elucidation of the fatty acid composition by gas chromatography mass spectra (GCMS) analysis showed that PL from all samples are rich in beneficial monounsaturated fatty acids (MUFA) and omega 3 (n-3) polyunsaturated fatty acids (PUFA), providing a possible explanation for their strong anti-platelet properties, while the favorable low levels of their omega-6/omega-3 (n-6/n-3) PUFA ratio, especially for the bioactive PC and PE subclasses, further support an anti-inflammatory cardio-protective potency for these apple products. In conclusion, Irish apple juice and Real Irish cider were found to possess bioactive PL compounds with strong antiplatelet and anti-inflammatory properties, while fermentation seems to be an important modulating factor on their lipid content, structures and bioactivities. However, further studies are needed to evaluate these effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.