Cytokines are low-molecular-weight mediators of cellular communication produced by multiple cell types in the liver, with the Kupffer cell critically important. Inflammatory cytokines such as tumor necrosis factor, interleukin-1, and interleukin-8, and hepatic acute-phase cytokines such as interleukin-6 play a role in modulating certain metabolic complications in alcoholic liver disease and probably play a role in the liver injury of alcoholic liver disease. Two potential inducers of cytokine production in alcoholic liver disease are endotoxin and reactive oxygen species generated after ethanol metabolism. Cytotoxic cytokines likely induce liver cell death by both necrosis and apoptosis in alcoholic liver disease. Anticytokine therapy has been highly successful in attenuating cell injury/death in a variety of toxin-induced models of liver injury, including alcohol-related liver injury. Anticytokine therapy has been used successfully in humans in disease processes such as Crohn's disease and rheumatoid arthritis. There is an emerging rationale for use of anticytokine therapy in alcoholic liver disease, with the goal of maintaining beneficial effects of cytokines and inhibition of the deleterious effects of these potentially toxic agents.
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease in the US and refers to a wide spectrum of liver damage, including simple steatosis, steatohepatitis, fibrosis and cirrhosis. The goal of the present study was to achieve a more detailed understanding of the molecular changes in response to high fat-induced liver steatosis through the identification of a differentially expressed liver transcriptome and proteome. Male C57/BL6 mice fed a high-fat lard diet for 8 weeks developed visceral obesity and hepatic steatosis characterized by significantly increased liver and plasma free fatty acid and triglyceride levels and plasma alanine aminotransferase activities. Transcriptome analysis demonstrated that, compared to the control diet (CD), high-fat diet changed the expression of 309 genes (132 up- and 177 down-regulated; by a twofold change and more, P<.05). Multiple genes encoding proteins involved in lipogenesis were down-regulated, whereas genes involved in fatty acid oxidation were up-regulated. Proteomic analysis revealed 12 proteins which were differentially expressed. Of these, glutathione S-transferases mu1 and pi1 and selenium-binding protein 2 were decreased at both the gene and protein levels. This is the first study to perform a parallel transcriptomic and proteomic analysis of diet-induced hepatic steatosis. Several key pathways involving xenobiotic and lipid metabolism, the inflammatory response and cell-cycle control were identified. These pathways provide targets for future mechanistic and therapeutic studies as related to the development and prevention of NAFLD.
Alcoholic liver disease (ALD) remains a leading cause of death from liver disease in the United States for which there is no FDA-approved therapy. Abnormal cytokine metabolism is a major feature of ALD. Elevated serum concentration levels of TNF-alpha and TNF-alpha-inducible cytokines/chemokines, such as IL-6, -8, and -18, have been reported in patients with alcoholic hepatitis and/or cirrhosis, and levels correlated with markers of the acute phase response, liver function, and clinical outcome. Studies in animal models support an etiologic role for cytokines in the liver injury of ALD. Cytokines, such as transforming growth factor-beta, play a critical role in the fibrosis of ALD. Multiple new strategies are under investigation to modulate cytokine metabolism as a form of therapy for ALD.
Although recent evidence suggests that down-regulation of production of the adipocyte hormone adiponectin has pathophysiological consequences for the development of alcoholic liver disease (ALD), the underlying mechanisms are elusive. Abnormal hepatic methionine-homocysteine metabolism induced by prolonged alcohol exposure has been reported both in clinical and experimental studies of ALD. Here, we conducted both in vivo and in vitro experiments to examine the effects of prolonged alcohol exposure on homocysteine levels in adipose tissue, its potential involvement in regulating adiponectin production, and the consequences for ALD. Chronic alcohol exposure decreased the circulating adiponectin concentration and adiponectin messenger RNA (mRNA) and protein levels in epididymal fat pads. Alcohol feeding induced modest hyperhomocysteinemia and increased homocysteine levels in the epididymal fat pad, which was associated with decreased mRNA levels of cystationine -synthase. Betaine supplementation (1.5%, wt/vol) in the alcohol-fed mice reduced homocysteine accumulation in adipose tissue and improved adiponectin levels. Moreover, exogenous homocysteine administration reduced gene expression, protein levels, and secretion of adiponectin in primary adipocytes. Furthermore, rats fed a high-methionine diet (2%, wt/wt) were hyperhomocysteinemic and had decreased adiponectin levels in both plasma and adipose tissue, which was associated with suppressed AMP-activated protein kinase activation in the liver. Mechanistic studies revealed that both inactivation of the extracellular signal regulated kinase 1/2 pathway and induction of endoplasmic reticulum stress response, specifically C/EBP homologous protein expression, may contribute to the inhibitory effect exerted by homocysteine. Conclusion: Chronic alcohol feeding caused abnormal accumulation of homocysteine in adipocytes, which contributes to decreased adiponectin production in ALD. (HEPATOLOGY 2008;47:867-879.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.