At hatching, the oesophagus of haddock Melanogrammus aeglefinus lacks goblet cells, the intestine is a simple undifferentiated tube, the liver is present as a rounded mass caudal to the heart, and numerous zymogen granules are present in the pancreas. The first intestinal convolution appears at day 2, at the posterior end of the digestive tract. The oesophagus displays alcian blue and PAS positive mucus secreting cells on day 12, which become numerous by day 15. By day 18, epithelial cells of the posterior intestine show evidence of protein absorption in the form of supranuclear vacuoles. The swimbladder inflates in 50% of the larvae by day 22, although inflation rate is highly variable. By day 35, or 10 mm, a pyloric caecal ridge appears which separates the presumptive stomach, which is now showing evidence of gastric gland formation, from the intestine. This marks the beginning of digestive features characteristic of the juvenile stage. 2000 The Fisheries Society of the British Isles
Temperature influences both the physiology of fish larvae and the physics of the flow conditions under which they swim. For small larvae in low Reynolds number (Re) hydrodynamic environments dominated by frictional drag, temperature-induced changes in the physics of water flow have the greatest effect on swimming performance. For larger larvae, in higher Re environments, temperature-induced changes in physiology become more important as larvae swim faster and changes in swimming patterns and mechanics occur. Physiological rates at different temperatures have been quantified using Q 10 s with the assumption that temperature only affected physiological variables. Consequently, Q 10 s that did not consider temperatureinduced changes in viscosity overestimated the effect of temperature on physiology by 58% and 56% in cold-water herring and cod larvae respectively. In contrast, in warm-water Danube bleak larvae, Q 10 s overestimated temperature-induced effects on physiology by only 5-7%. This may be because in warm water, temperature-induced changes affect viscosity to a smaller degree than in cold water. Temperature also affects muscle contractility and efficiency and at high swimming velocities, efficiency decreases more rapidly in cold-exposed than in warm-exposed muscle fibres. Further experiments are needed to determine whether temperature acts differently on swimming metabolism in different thermal environments. While hydrodynamic factors appear to be very important to larval fish swimming performance in cold water, they appear to lose importance in warm water where temperature effects on physiology dominate. This may suggest that major differences exist among locomotory capacities of larval fish that inhabit cold, temperate waters compared to those that live in warm tropical waters. It is possible that fish larvae may have developed strategies that affect dispersal and recruitment in different aquatic habitats in order to cope not only with temperature-induced physiological challenges, but physical challenges as well.
Phenylketonuria (PKU) is a genetic disease characterized by the inability to convert dietary phenylalanine to tyrosine by phenylalanine hydroxylase. Given the importance of gut microbes in digestion, a genetically engineered microbe could potentially degrade some ingested phenylalanine from the diet prior to absorption. To test this, a phenylalanine lyase gene from Anabaena variabilis (AvPAL) was codon-optimized and cloned into a shuttle vector for expression in Lactobacillus reuteri 100-23C (pHENOMMenal). Functional expression of AvPAL was determined in vitro, and subsequently tested in vivo in homozygous PAHenu2 (PKU model) mice. Initial trials of two PAHenu2 homozygous (PKU) mice defined conditions for freeze-drying and delivery of bacteria. Animals showed reduced blood phe within three to four days of treatment with pHENOMMenal probiotic, and blood phe concentrations remained significantly reduced (P < 0.0005) compared to untreated controls during the course of experiments. Although pHENOMMenal probiotic could be cultured from fecal samples at four months post treatment, it could no longer be cultivated from feces at eight months post treatment, indicating eventual loss of the microbe from the gut. Preliminary screens during experimentation found no immune response to AvPAL. Collectively these studies provide data for the use of a genetically engineered probiotic as a potential treatment for PKU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.