The increased demand for wind power is related to changes in the sizes of wind turbines and the development of flow control devices, such as vortex generators (VGs). In the present study, an analysis of the vortices generated by a vane-type VG is performed. To that end, the aerodynamic performance of a DU97W300 airfoil with and without VG is evaluated. The jBAY source term model was implemented for simulation of a triangular-shaped VG and the resolution of the fully meshed computational fluid dynamics (CFD) model. Reynolds-averaged Navier–Stokes (RANS) based simulations were used to calculate the effect of VGs in steady state, and the detached eddy simulation (DES) method was used for angles of attack (AoAs) around the stall situation. All jBAY based numerical simulations were carried out with a Reynolds number of Re = 2 × 106 to analyze the influence of VGs with AoAs between 0 and 20° and were validated versus experimental wind tunnel results. The results show that setting up a VG device on an airfoil benefits its aerodynamic performance and that the use of the jBAY model for simulation is accurate and efficient.
Vortex generators (VG) are passive flow control devices used for avoiding or delaying the separation of the boundary layer by bringing momentum from the higher layers of the fluid towards the surface. The Vortex generator usually has the same height as the local boundary layer thickness, and these Vortex generators can produce overload drag in some cases. The aim of the present study was to analyze the characteristics and path of the primary vortex produced by a single rectangular vortex generator on a flat plate for the incident angles of β = 10 • , 15 • , 18 • and 20 • . A parametric study of the induced vortex was performed for six VG heights using Reynolds average Navier-Stokes equations at Reynodls number Re = 27,000 based on the local boundary layer thickness, using computational fluid dynamics techniques with OpenFOAM open-source code. In order to determine the vortex size, the so-called half-life radius was computed and compared with experimental data. The results showed a similar trend for all the studied vortex generator heights and incident angles with small variations for the vertical and the lateral paths. Additionally, 0.4H and 0.6H VG heights at incident angles of β = 18 • and β = 20 • showed the best performance in terms of vortex strength and generation of wall shear stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.