The variation of the secondary electron yield (SEY) of sputter-cleaned OFHC-copper has been studied as a function of air exposure duration at room temperature. After short air exposures of some seconds the maximum SEY (δ MAX ) of clean copper is reduced from 1.3 to less than 1.2, due to the oxidation of the copper surface. Prolonged air exposure increases the SEY steadily until, after about 8 days of atmospheric exposure, δ MAX is higher than 2.Air exposures at higher temperatures have been found to be effective in reducing the SEY of technical copper surfaces. A 5-minute air exposure of copper at 350°C followed by a 350°C bake-out under vacuum reduces δ MAX to about 1.05, which is lower than the value of pure copper and that of Cu 2 O.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.