Non‐small cell lung cancer (NSCLC) is the most common type of the lung cancer. Despite development in treatment options in NSCLC, the overall survival ratios is still poor due to epithelial and mesenchymal transition (EMT) feature and associated metastasis event. Thereby there is a need to develop strategy to increase antitumor response against the NSCLC cells by targeting EMT pathway with combination drugs. Niclosamide and chalcone complexes are both affect cancer cell signaling pathways and therefore inhibit the EMT pathway. In this study, it was aimed to increase antitumor response and suppress EMT pathway in NSCLC cells by combining niclosamide and chalcone complexes. SRB cell viability assay was performed to investigate the anticancer activity of drugs. The drugs were tested on both NSCLC cells (A549 and H1299) and normal lung bronchial cells (BEAS‐2B). Then the two drugs were combined and their effects on cancer cells were evaluated. Fluorescence imaging and enzyme‐linked immunosorbent assay were performed on treated cells to observe the cell death manner. Wound healing assay, real‐time quantitative polymerase chain reaction, and western blot analysis were performed to measure EMT pathway activity. Our results showed that niclosamide and chalcone complexes combination kill cancer cells more than normal lung bronchial cells. Compared to single drug administration, the combination of both drugs killed NSCLC cells more effectively by increasing apoptotic activity. In addition, the combination of niclosamide and chalcone complexes decreased multidrug resistance and EMT activity by lowering their gene expressions and protein levels. These results showed that niclosamide and chalcone complexes combination could be a new drug combination for the treatment of NSCLC.
Breast cancer is the leading cause of cancer-related deaths in women throughout the world. Research on natural anti-cancer products from plants has gained traction. Salvia L. species and their derivatives are rare in Turkey and have suggested for their potential anti-cancer effects. The aim of this study is to assess the potential cytotoxic/apoptotic activities of methanol extract of Salvia candidissima Vahl. subsp. candidissima (SCE) on MCF-7 and MDA-MB-231 breast cancer cells. A GCxGC-TOF/MS system and a dual stage commercial thermal desorption injector were used to determine the chemical components of SCE. MTT and ATP viability tests were used to investigate the anti-growth activity. The apoptosis-inducing effect was assessed using a fluorescence staining method. Caspase-cleaved keratin 18 (ccK18, M30-antigen) levels measured by M30-CytoDeath ELISA Kit. The results showed that SCE suppressed the survival of the MCF-7 and MDA-MB-231 breast cancer cells in a dose-dependent manner, based on the findings of both MTT and ATP cell viability tests and pyknotic cell nuclei were observed via fluorescent staining in both cell lines after 48 h of treatment. The treatment group had greater levels of caspase-cleaved keratin 18 in the MCF-7 cells than the untreated group. These results showed that SCE triggers apoptosis, causes cell death in MCF-7 and MDA-MB-231 cell lines. SCE may become promising therapeutic strategy in the treatment of breast cancer with further in vitro and in vivo studies. HIGHLIGHTS •Salvia species have been suggested for their potential anti-cancer effects.• Salvia candidissima Vahl. subsp. candidissima suppressed the survival of the breast cancer cells.• Breast cancer cells nuclei become pyknotic and fragmented after treatment. •The treatment group had greater levels of M30-antigen level in the MCF-7 cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.