Chitosan-based carriers have important potential applications for the administration of drugs. In the present study, topical gel formulations of terbinafine hydrochloride (T-HCl) were prepared using different types of chitosan at different molecular weight, and the antifungal inhibitory activity was evaluated to suggest an effective formulation for the treatment of fungal infections. The characteristics of gel formulations were determined with viscosity measurements and texture profile analysis. Stability studies were performed at different temperatures during 3 months. The ex vivo permeation properties were studied through rat skin by using Franz diffusion cells. The antifungal inhibitory activity of formulations on Candida species and filamentous fungi was also examined with agar-cup method. The microbiological assay was found suitable for determination of in vitro antifungal activity of T-HCl. A marketed product was used to compare the results. The antifungal activity of T-HCl significantly increased when it was introduced into the chitosan gels. A higher drug release and the highest zone of inhibition were obtained from gels prepared with the lowest molecular weight chitosan (Protasan UP CL 213) compared to that of other chitosan gels and marketed product. These results indicated the advantages of the suggested formulations for topical antifungal therapy against Candida species and filamentous fungi.
Abstract:The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders.
Poly(γ-benzyl-L-glutamate) (PBLG) derivatives are synthetic polypeptides for preparing nanoparticles with well controlled surface properties. The aim of this paper was to investigate the biodistribution of pegylated PBLG in rats. For this purpose, nanoparticles were prepared by a nanoprecipitation method using mixtures of different PBLG derivates, including a pegylated derivate to avoid mononuclear phagocyte system uptake. The morphology, size distribution, and surface charge of the nanoparticles were investigated as a function of the amount of polymer employed for the preparation. Moderately polydispersed nanoparticles (polydispersity index less than 0.2) were obtained. Their size increased with polymer concentration. The zeta potential values were negative whatever the formulations. The availability of polyethylene glycol chains on the nanoparticles' surface was confirmed by measuring the decrease in bovine serum albumin adsorption. For in vivo distribution studies, pegylated and nonpegylated nanoparticles were prepared with polymer mixtures containing PBLG-fluorescein isothiocyanate and imaged by fluorescence microscopy to measure their accumulation in liver and spleen tissues of rats after intravenous administration. Injection of stealth formulations resulted in negligible fluorescence in liver and spleen compared with nonpegylated formulations, which suggests that these nanoparticles are promising candidates as a stealth-type long-circulating drug carrier system and could be useful for active targeting of drugs while reducing systemic side effects.
MicroRNAs (miRNAs) are acknowledged as indispensable regulators relevant in many biological processes, and they have been pioneered as therapeutic targets for curing disease. miRNAs are single-stranded, small (19-22 nt) regulatory non-coding RNAs whose deregulation of expression triggers human cancers, including leukemias, mainly through dysregulation of expression of leukemia genes. miRNAs can function as tumour suppressors (suppressing malignant potential) or oncogenes (activating malignant potential) like actors of complex diseases. To address the issue of overcoming instability and low transfection efficiency in vitro, the polyethylene glycol-polyethyleneimine (PEG-PEI) nanoparticle was used as non-viral vector carrier for miR-150 transfection, which is downregulated in chronic myeloid leukemia. PEG-PEI [PEG(550)3 -g-PEI(1800) ]/miRNA nanocomplexes were synthesised and characterised by particle size distribution (PSD), polydispersity index (PDI) and zeta potential, surface charge, their cytotoxicity, and transfection efficiency. Interaction with human leukemia cells (K-562 and KU812) and control cells NCI-BL2347 with them has been investigated. The transfection efficiency of PEG-PEI/miRNA at N/P 26 rose 6.7-fold above the control by qRT-PCR. The size of homogenous nanocomplexes (PBI < 0.5) was 160.8 ± 11 nm. The data indicate that PEG-PEI may be an encouraging non-viral carrier for altering miRNA expression in the treatment of chronic myeloid leukemia, with many advantages such as relatively high miRNA transfection efficiency and low cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.