Action recognition is an important component to improve autonomy of physical rehabilitation devices, such as wearable robotic exoskeletons. Existing human action recognition algorithms focus on adult applications rather than pediatric ones. In this paper, we introduce BabyNet, a light-weight (in terms of trainable parameters) network structure to recognize infant reaching action from off-body stationary cameras. We develop an annotated dataset that includes diverse reaches performed while in a sitting posture by different infants in unconstrained environments (e.g., in home settings, etc.). Our approach uses the spatial and temporal connection of annotated bounding boxes to interpret onset and offset of reaching, and to detect a complete reaching action. We evaluate the efficiency of our proposed approach and compare its performance against other learning-based network structures in terms of capability of capturing temporal inter-dependencies and accuracy of detection of reaching onset and offset. Results indicate our BabyNet can attain solid performance in terms of (average) testing accuracy that exceeds that of other larger networks, and can hence serve as a light-weight data-driven framework for video-based infant reaching action recognition.
Soft robotics hold promise in the development of safe yet powered assistive wearable devices for infants. Key to this is the development of closed-loop controllers that can help regulate pneumatic pressure in the device's actuators in an effort to induce controlled motion at the user's limbs and be able to track different types of trajectories. This work develops a controller for soft pneumatic actuators aimed to power a pediatric soft wearable robotic device prototype for upper extremity motion assistance. The controller tracks desired trajectories for a system of soft pneumatic actuators supporting two-degree-of-freedom shoulder joint motion on an infant-sized engineered mannequin. The degrees of freedom assisted by the actuators are equivalent to shoulder motion (abduction/adduction and flexion/extension). Embedded inertial measurement unit sensors provide real-time joint feedback. Experimental data from performing reaching tasks using the engineered mannequin are obtained and compared against ground truth to evaluate the performance of the developed controller. Results reveal the proposed controller leads to accurate trajectory tracking performance across a variety of shoulder joint motions.
This paper focuses on the design and systematic evaluation of fabric-based, bellow-type soft pneumatic actuators to assist with flexion and extension of the elbow, intended for use in infant wearable devices. Initially, the performance of a range of actuator variants was explored via simulation. The actuator variants were parameterized based on the shape, number, and size of the cells present. Subsequently, viable actuator variants identified from the simulations were fabricated and underwent further testing on a physical model based on an infant's body anthropometrics. The performance of these variants was evaluated based on kinematic analyses using metrics including movement smoothness, path length, and elbow joint angle. Internal pressure of the actuators was also attained. Taken together, results reported herein provide valuable insights about the suitability of several actuator designs to serve as components for pediatric wearable assistive devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.