This manuscript proposes a class of fractional stochastic integro-differential equation (FSIDE) with non-instantaneous impulses in an arbitrary separable Hilbert space. We use a projection scheme of increasing sequence of finite dimensional subspaces and projection operators to define approximations. In order to demonstrate the existence and convergence of an approximate solution, we utilize stochastic analysis theory, fractional calculus, theory of fractional cosine family of linear operators and fixed point approach. Furthermore, we examine the convergence of Faedo-Galerkin (F-G) approximate solution to the mild solution of our given problem. Finally, a concrete example involving partial differential equation is provided to validate the main abstract results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.