Treatment of Mn(2)(CO)(10) with 3,4-toluenedithiol and 1,2-ethanedithiol in the presence of Me(3)NO.2H(2)O in CH(2)Cl(2) at room temperature afforded the dinuclear complexes Mn(2)(CO)(6)(mu-eta(4)-SC(6)H(3)(CH(3))S-SC(6)H(3)(CH(3))S) (1), and Mn(2)(CO)(6)(mu-eta(4)-SCH(2)CH(2)S-SCH(2)CH(2)S) (2), respectively. Similar reactions of Re(2)(CO)(10) with 3,4-toluenedithiol, 1,2-benzenedithiol, and 1,2-ethanedithiol yielded the dirhenium complexes Re(2)(CO)(6)(mu-eta(4)-SC(6)H(3)(CH(3))S-SC(6)H(3)(CH(3))S) (3), Re(2)(CO)(6)(mu-eta(4)-SC(6)H(4)S-SC(6)H(4)S) (4), and Re(2)(CO)(6)(SCH(2)CH(2)S-SCH(2)CH(2)S) (5), respectively. In contrast, treatment of Mn(2)(CO)(10) with 1,3-propanedithiol afforded the trimanganese compound Mn(3)(CO)(6)(mu-eta(2)-SCH(2)CH(2)CH(2)S)(3) (6), whereas Re(2)(CO)(10) gave only intractable materials. The molecular structures of 1, 3, and 6 have been determined by single-crystal X-ray diffraction studies. The dimanganese and dirhenium carbonyl compounds 1-5contain a binucleating disulfide ligand, formed by interligand disulfide bond formation between two dithiolate ligands identical in structure to that of the previously reported dimanganese complex Mn(2)(CO)(6)(mu-eta(4)-SC(6)H(4)S-SC(6)H(4)S). Complex 6, on the other hand, forms a unique example of a mixed-valence trimangenese carbonyl compound containing three bridging 1,3-propanedithiolate ligands. The solution properties of 6 have been investigated by UV-vis and EPR spectroscopies as well as electrochemical techniques.
The complexes [Ni(eta(3)-CH(2)CHCH(2))Br(kappa(1)P-PR(2)CH(2)CH=CH(2))] (R = Ph 1, (i)Pr2 ) and [Ni(eta(3)-CH(2)C(R')CH(2))(kappa(1)P-PR(2)CH(2)CH=CH(2))(2)][BAr'(4)] (R' = H, R = Ph 4a, R = (i)Pr 4b; R' = CH(3), R = Ph 5a, R = (i)Pr 5b; Ar' = 3,5-C(6)H(3)(CF(3))(2)) have been prepared and characterized. The X-ray crystal structures of 1, 2 and 5b have been determined. 4a-b and 5a-b are catalyst precursors for the oligomerization of RC(6)H(4)CH=CH(2) to oligostyrene (R = H) or oligo(4-methylstyrene) (R = CH(3)) respectively, without the need of a co-catalyst such as methylalumoxane. The catalytic activities range from moderate to high. The oligomerization reactions are carried out in the temperature interval 25-40 degrees C in 1,2-dichloroethane, using an olefin/catalyst ratio equal to 200, yielding oligostyrenes with a high isotactic fraction content P(m), with M(n) in the range 700-1900 Dalton, and polydispersities between 1.22 and 1.64. The cationic complexes 4a-b and 5a-b are also effective catalyst precursors for the hydrosilylation reactions of styrene or 4-methylstyrene with PhSiH(3) in 1,2-dichloroethane at 40 degrees C using an olefin/catalyst ratio equal to 100, leading selectively to RC(6)H(4)CH(SiH(2)Ph)CH(3) (R = H, CH(3)) in 50-79% yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.