Lack of insulin production by pancreas causes high blood glucose level (BGL) in the diabetic patients. For their treatment, manual insulin intake is possible only during the day timings but not feasible during the night when the patient is sleeping. Artificial pancreas (AP) is used for the automatic regulation of BGL by continuous injection of insulin. The nonlinear Bergman's Minimal Model (BMM) considers fixed meal disturbance which may actually vary continuously during medication due to meal intake or by doing exercise. This variation has been taken into account by the Extended Bergman's Minimal Model (EBMM). In this paper, two nonlinear: Terminal Synergetic and State Feedback Linearization based controllers have been proposed for AP to regulate BGL using EBMM. Asymptotic stability of the proposed controllers has been proved using Lyapunov theory. Comparison of the proposed controllers with each other and that with PID controller has been done using MATLAB/Simulink. White noise has been added as the disturbance to further analyze the output performance of the proposed controllers. The Terminal Synergetic controller which performs better than others, has also been implemented on the data of six Type 1 diabetic patients available in the literature.
Destruction of β‐cells in pancreas causes deficiency in insulin production that leads to diabetes in the human body. To cope with this problem, insulin is either taken orally during the day or injected into the patient's body using artificial pancreas (AP) during sleeping hours. Some mathematical models indicate that AP uses control algorithms to regulate blood glucose concentration (BGC). The extended Bergman minimal model (EBMM) incorporates, as a state variable, the disturbance in insulin level during medication due to either meal intake or burning sugar by engaging in physical exercise. In this research work, EBMM and proposed finite time robust controllers are used, including the sliding mode controller (SMC), backstepping SMC (BSMC) and supertwisting SMC (second‐order SMC or SOSMC) for automatic stabilisation of BGC in type 1 diabetic patients. The proposed SOSMC diminishes the chattering phenomenon which appears in the conventional SMC. The proposed BSMC is a recursive technique which becomes robust by the addition of the SMC. Lyapunov theory has been used to prove the asymptotic stability of the proposed controllers. Simulations have been carried out in MATLAB/Simulink for the comparative study of the proposed controllers under varying data of six different type 1 diabetic patients available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.