Clustering high dimensional data is an emerging research field.
Subspace clustering
or
projected clustering
group similar objects in subspaces, i.e. projections, of the full space. In the past decade, several clustering paradigms have been developed in parallel, without thorough evaluation and comparison between these paradigms on a common basis.
Conclusive evaluation and comparison is challenged by three major issues. First, there is no ground truth that describes the "true" clusters in real world data. Second, a large variety of evaluation measures have been used that reflect different aspects of the clustering result. Finally, in typical publications authors have limited their analysis to their favored paradigm only, while paying other paradigms little or no attention.
In this paper, we take a systematic approach to evaluate the major paradigms in a common framework. We study representative clustering algorithms to characterize the different aspects of each paradigm and give a detailed comparison of their properties. We provide a benchmark set of results on a large variety of real world and synthetic data sets. Using different evaluation measures, we broaden the scope of the experimental analysis and create a common baseline for future developments and comparable evaluations in the field. For repeatability, all implementations, data sets and evaluation measures are available on our website.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.