The molecular interface between bioorganics and inorganics plays a key role in diverse scientific and technological research areas including nanoelectronics, biomimetics, biomineralization, and medical applications such as drug delivery systems and implant coatings. However, the physical/chemical basis of recognition of inorganic surfaces by biomolecules remains unclear. The molecular level elucidation of specific interfacial interactions and the structural and dynamical state of the surface bound molecules is of prime scientific importance. In this study, we demonstrate the ability of solid state NMR methods to accomplish these goals. L-[1-(13)C,(15)N]Alanine loaded onto SBA-15 mesoporous silica with a high surface area served as a model system. The interacting alanine moiety was identified as the -NH(3)(+) functional group by (15)N{(1)H}SLF NMR. (29)Si{(15)N} and (15)N{(29)Si}REDOR NMR revealed intermolecular interactions between the alanine -NH(3)(+) and three to four surface Si species, predominantly Q(3), with similar internuclear N...Si distances of 4.0-4.2 A. Distinct dynamic states of the adsorbed biomolecules were identified by (15)N{(13)C}REDOR NMR, indicating both bound and free alanine populations, depending on hydration level and temperature. In the bound populations, the -NH(3)(+) group is surface anchored while the free carboxylate end undergoes librations, implying the carboxylate has small or no contributions to surface binding. When surface water clusters grow bigger with increased hydration, the libration amplitude of the carboxyl end amplifies, until onset of dissolution occurs. Our measurements provide the first direct, comprehensive, molecular-level identification of the bioorganic-inorganic interface, showing binding functional groups, geometric constraints, stoichiometry, and dynamics, both for the adsorbed amino acid and the silica surface.
The interactions between bioorganic molecules and inorganic surfaces play a key role in a wide range of multidisciplinary phenomena, among which are catalysis, biomineralization, separation methods, and surface functionalization. Binding of amino acids to inorganic surfaces is of special interest due to their significant role in protein−surface recognition; however, direct experimental evidence on the molecular details of these is scant and often inconclusive. Herein, [1-13 C, 15 N]glycine interactions with amorphous silica surface of SBA-15 were comprehensively characterized using multinuclear, solid-state NMR techniques (REDOR, TEDOR, SLF, 2D-HETCOR). Glycine's ammonium group is shown to interact directly with a specific surface site of a well-defined geometry and stoichiometry:+ group is surface anchored, the pendent carboxylate reorients with small amplitude with a minor or no contribution to binding. The role of water molecules was studied by increasing surface hydration and temperature and monitoring bound glycine dynamics. Glycine populations with increasing reorientation amplitudes, through isotropic motion of dissolved glycine, coexist, reflecting binding sites solvated by larger water clusters. The similarity of the specific silica site and of the interactions and dynamic modes of bound glycine to those previously reported for L-alanine on SBA-15 suggests we evidence a general binding pattern of amino acids with nonpolar side chains to amorphous silica surfaces. Although loaded from unsaturated aqueous solution, competing with the sparse surface binding, surface-induced crystallization of the α and β polymorphs occurred. Tailored solid-state NMR methodology yields direct, quantitative experimental evidence that enables molecular-functional description of the interfacial interactions and further demonstrates the importance of this class of techniques in the wide field of surface science.
Biomineralization, particularly the formation of calcium carbonate structures by organisms under ambient conditions, is of vast fundamental and applied interest. Organisms finely control all aspects of the formation of the biomaterials: composition, polymorph, morphology, and macroscopic properties. While in situ molecular-level characterization of the resulting biominerals is a formidable task, solid-state magic angle spinning NMR is one of the most powerful analytical techniques for this purpose. It is employed in this study to elucidate the structure and composition of biogenic calcite formed by Emiliania huxleyi, a unicellular alga distinguished by its exquisitely sculptured calcite cell coverings known as coccoliths. Strain 371 (CCMP) was grown and harvested from (15)N- and (13)C-enriched growth medium, with biosynthetic labeling to enhance the sensitivity of the NMR measurements. Crystalline and interfacial calcite environments were selectively probed using direct and indirect (cross-polarized) (13)C excitation, respectively. Different crystalline environments, in particular structural defect sites at concentrations of up to 1.4% with P and N moieties incorporated, were identified using (13)C rotational-echo double-resonance (REDOR) NMR. REDOR-derived geometrical constraints show that the P and N atoms at the defect sites are 3.2 and 2.3 (+/-0.2) A apart from a crystalline carbon carbonate. The phosphorus and nitrogen moieties within the biogenic calcite are identified as small, non-protonated moieties, attributed to inorganic ions such as PO4(3-) and NO3(-). The carbonates adjacent to these defects are chemically indistinguishable from bulk crystalline carbonates, yet their immediate environments experience reduced rigidity, as reflected by substantial T1((13)CO3(2-)) shortening. Interfacial carbonates, on the other hand, reside in structurally/chemically perturbed environments, as reflected by heterogeneous line broadening. This study is the first to directly unravel evidence on the incorporation of P/N moieties as structural defects within E. huxleyi biogenic calcite, and on the state of the adjacent crystalline carbonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.