A process has been developed for the in situ formation of the mineral phase of bone. Inorganic calcium and phosphate sources are combined to form a paste that is surgically implanted by injection. Under physiological conditions, the material hardens in minutes concurrent with the formation of dahllite. After 12 hours, dahllite formation was nearly complete, and an ultimate compressive strength of 55 megapascals was achieved. The composition and crystal morphology of the dahllite formed are similar to those of bone. Animal studies provide evidence that the material is remodeled in vivo. A novel approach to skeletal repair is being tested in human trials for various applications; in one of the trials the new biomaterial is being percutaneously placed into acute fractures. After hardening, it serves as internal fixation to maintain proper alignment while healing occurs.
Four calcium phosphate cement formulations were implanted in the rabbit distal femoral metaphysis and middiaphysis. Chemical, crystallographic, and histological analyses were made at 2, 4, and 8 weeks after implantation. When implanted into the metaphysis, part of the brushite cement was converted into carbonated apatite by 2 weeks. Some of the brushite cement was removed by mononuclear macrophages prior to its conversion into apatite. Osteoclastlike cell mediated remodeling was predominant at 8 weeks after brushite had converted to apatite. The same histological results were seen for brushite plus calcite aggregate cement, except with calcite aggregates still present at 8 weeks. However, when implanted in the diaphysis, brushite and brushite plus calcite aggregate did not convert to another calcium phosphate phase by 4 weeks. Carbonated apatite cement implanted in the metaphysis did not transform to another calcium phosphate phase. There was no evidence of adverse foreign body reaction. Osteoclastlike cell mediated remodeling was predominant at 8 weeks. The apatite plus calcite aggregate cement implanted in the metaphysis that was not remodeled remained as poorly crystalline apatite. Calcite aggregates were still present at 8 weeks. There was no evidence of foreign body reaction. Osteoclastlike cell remodeling was predominant at 8 weeks. Response to brushite cements prior to conversion to apatite was macrophage dominated, and response to apatite cements was osteoclast dominated. Mineralogy, chemical composition, and osseous implantation site of these calcium phosphates significantly affected their in vivo host response.
Four calcium phosphate cement formulations were implanted in the rabbit distal femoral metaphysis and middiaphysis. Chemical, crystallographic, and histological analyses were made at 2, 4, and 8 weeks after implantation. When implanted into the metaphysis, part of the brushite cement was converted into carbonated apatite by 2 weeks. Some of the brushite cement was removed by mononuclear macrophages prior to its conversion into apatite. Osteoclastlike cell mediated remodeling was predominant at 8 weeks after brushite had converted to apatite. The same histological results were seen for brushite plus calcite aggregate cement, except with calcite aggregates still present at 8 weeks. However, when implanted in the diaphysis, brushite and brushite plus calcite aggregate did not convert to another calcium phosphate phase by 4 weeks. Carbonated apatite cement implanted in the metaphysis did not transform to another calcium phosphate phase. There was no evidence of adverse foreign body reaction. Osteoclastlike cell mediated remodeling was predominant at 8 weeks. The apatite plus calcite aggregate cement implanted in the metaphysis that was not remodeled remained as poorly crystalline apatite. Calcite aggregates were still present at 8 weeks. There was no evidence of foreign body reaction. Osteoclastlike cell remodeling was predominant at 8 weeks. Response to brushite cements prior to conversion to apatite was macrophage dominated, and response to apatite cements was osteoclast dominated. Mineralogy, chemical composition, and osseous implantation site of these calcium phosphates significantly affected their in vivo host response. ᭧ 1998 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 43: [451][452][453][454][455][456][457][458][459][460][461] 1998 Keywords: calcium phosphate(s); brushite; hydroxyapatite; calcite; remodeling INTRODUCTIONb-tricalcium phosphate (b-TCP) and hydroxyapatite mixtures used as bone void fillers and preformed granules, and blocks of hydrothermally processed apatite used as Numerous calcium phosphates have been evaluated as bioscaffolding in nonunion fracture applications. The different materials in orthopedics with varying degrees of success calcium phosphate phases present in these materials range in diverse applications such as bone void fillers, ingrowth from phase pure crystalline materials to mixtures of amorsurfaces on metal implants, and carriers for bone growth phous glasses with highly crystalline phases. factors.1-6 These materials fall into a wide range of initial LeGeros showed in vitro that calcium phosphates such chemical and crystallographic composition, morphology, as b-TCP and dicalcium phosphate dihydrate (DCPD), and physical handling characteristics. Calcium phosphates commonly known as brushite, undergo transformation to used currently in orthopedics and dentistry include sintered apatitic calcium phosphate. 7 a-TCP has been shown to hydroxyapatite granules used as periodontal fillers, plasma transform to apatite in vivo. 8 Simkiss and Wilbur also sugspra...
Abstract:It is controversial as to whether debris from hydroxyapatite (HA)-coated implants jeopardizes the longterm success of total joint replacements. It has been hypothesized that liberated HA particles are engulfed by macrophages and through normal cellular digestion prevent osteolysis and third-body wear. HA particulates, however, have been observed at the interface and on polyethylene articulating surfaces. There is limited data demonstrating the ability of HA to dissolve at the acidity levels associated with macrophage organelle digestion. The objective of this study was to determine if particulate HA could dissolve at the pH levels found in macrophage organelles. Characterized HA particles were placed into buffered solutions corresponding to phagosomal organelle pH levels: cytoplasmic (pH 7), phagosomal (pH 6), and lysosomal (pH 5). Flasks were under continuous agitation in a shaker chamber at 37°C. Calcium and phosphate ions were measured beyond the maximum life span of an activated macrophage. The data showed that calcium ions rose within the first 24 h and then remained constant throughout the experiment for all pH groups. Phosphate ion concentration showed a similar pattern at the lysosomal pH but remained undetected at the other organelle pH levels. The saturation point was highest at the lysosomal pH level and lowest at the cytoplasmic pH level. The results of this experiment leave the potential for HA particles to dissolve following macrophage digestion. However, caution must be exercised when interpreting the macrophage organelle digestion hypothesis; the size of the HA particle, the length of time required to completely dissolve the particle, and potential cellular toxicity all are factors that have yet to be determined before this hypothesis can be validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.