The oxytocinase subfamily of M1 aminopeptidases, consisting of ER aminopeptidase 1 (ERAP1), ER aminopeptidase 2 (ERAP2), and insulin-regulated aminopeptidase (IRAP), plays critical roles in the generation of antigenic peptides and indirectly regulates human adaptive immune responses. We have previously demonstrated that phosphinic pseudotripeptides can constitute potent inhibitors of this group of enzymes. In this study, we used synthetic methodologies able to furnish a series of stereochemically defined phosphinic pseudotripeptides and demonstrate that side chains at P' and P' positions are critical determinants in driving potency and selectivity. We identified low nanomolar inhibitors of ERAP2 and IRAP that display selectivity of more than 2 and 3 orders of magnitude, respectively. Cellular analysis demonstrated that one of the compounds that is a selective IRAP inhibitor can reduce IRAP-dependent but not ERAP1-dependent cross-presentation by dendritic cells with nanomolar efficacy. Our results encourage further preclinical development of phosphinic pseudotripeptides as regulators of adaptive immune responses.
The monitoring of reactive oxygen species in living cells provides valuable information on cell function and performance. Lately, the development of chemiluminescence-based reactive oxygen species monitoring has gained increased attention due to the advantages posed by chemiluminescence, including its rapid measurement and high sensitivity. In this respect, specific organelle-targeting trackers with strong chemiluminescence performance are of high importance. We herein report the synthesis and chemiluminescence properties of eight novel phosphonium-functionalized amino-acylated luminol and isoluminol derivatives, designed as mitochondriotropic chemiluminescence reactive oxygen species trackers. Three different phosphonium cationic moieties were employed (phenyl, p-tolyl, and cyclohexyl), as well as two alkanoyl chains (hexanoyl and undecanoyl) as bridges/linkers. Synthesis is accomplished via the acylation of the corresponding phthalimides, as phthalhydrazide precursors, followed by hydrazinolysis. This method was chosen because the direct acylation of (iso)luminol was discouraging. The new derivatives’ chemiluminescence was evaluated and compared with that of the parent molecules. A relatively poor chemiluminescence performance was observed for all derivatives, with the isoluminol-based ones being the poorest. This result is mainly attributed to the low yield of the fluorescence species formation during the chemiluminescence oxidation reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.