The presence of pairs of basic amino acids within the orphanin FQ/Nociceptin (OFQ/N) sequence has raised the possibility that truncated versions of the peptide might be physiologically important. OFQ/N(1-11) is pharmacologically active in mice, despite its poor affinity in binding assays (K(i) > 250 nM) for the OFQ/N receptor. Using an analog of OFQ/N(1-11), [(125)I][Tyr(10)]OFQ/N(1-11), we identified a high-affinity binding site (K(D) 234 pM; B(max) 43 fmol/mg protein) with a selectivity profile distinct from the OFQ/N receptor and all the traditional opioid receptors. This site had very high affinity for OFQ/N and its related peptides. The most striking differences between the new site and the OFQ/N receptor previously observed in brain were seen with traditional opioids. Dynorphin A analogs and alpha-neoendorphin competed with [(125)I][Tyr(10)]OFQ/N(1-11) binding in mouse brain with K(i) values below 10 nM, while naloxone benzoylhydrazone (K(i) 3.9 nM) labeled the [(125)I][Tyr(10)]OFQ/N(1-11) binding site as potently as many traditional opioid receptors. Several other opioids, including fentanyl, (-)cyclazocine, levallorphan, naltrindole, and diprenorphine, also displayed moderate affinities for this site. Finally, the [(125)I][Tyr(10)]OFQ/N(1-11) site had a unique regional distribution consistent with a distinct receptor. Thus, [(125)I][Tyr(10)]OFQ/N(1-11) labels a novel site in brain with a selectivity profile intermediate between that of either opioid or OFQ/N receptors.
Western blots using an antibody which recognizes the orphanin FQ/nociceptin (OFQ/N) receptor reveals a band at approximately 69 kD in several cell lines, including the Raji human B cell lymphoma cell line. RT-PCR confirms the presence of this receptor in the Raji cells. Binding studies revealed a high affinity [(125)I][Tyr(14)]OFQ/N site in the Raji cells. The affinity of [(125)I][Tyr(14)]OFQ/N in the Raji cells (K(D) 68.4 pM) was similar to that in the transfected receptor (K(D) 36.7 pM). Its selectivity profile also was quite similar. OFQ/N competed binding quite potently (K(i) 65 pM), as did [Tyr(14)]OFQ/N (K(i) 33 pM). Traditional opioids displayed no appreciable affinity for the binding at any concentration examined, with the exception of naloxone benzoylhydrazone, which had only a very modest affinity. The receptors in the Raji cells were functionally active. OFQ/N inhibited forskolin-stimulated cyclase by 72% with an IC(50) value of approximately 1 nM.
Western blots using an antibody which recognizes the orphanin FQ/nociceptin (OFQ/N) receptor reveals a band at approximately 69 kD in several cell lines, including the Raji human B cell lymphoma cell line. RT-PCR confirms the presence of this receptor in the Raji cells. Binding studies revealed a high affinity [(125)I][Tyr(14)]OFQ/N site in the Raji cells. The affinity of [(125)I][Tyr(14)]OFQ/N in the Raji cells (K(D) 68.4 pM) was similar to that in the transfected receptor (K(D) 36.7 pM). Its selectivity profile also was quite similar. OFQ/N competed binding quite potently (K(i) 65 pM), as did [Tyr(14)]OFQ/N (K(i) 33 pM). Traditional opioids displayed no appreciable affinity for the binding at any concentration examined, with the exception of naloxone benzoylhydrazone, which had only a very modest affinity. The receptors in the Raji cells were functionally active. OFQ/N inhibited forskolin-stimulated cyclase by 72% with an IC(50) value of approximately 1 nM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.