The root meristem is organized around a quiescent center (QC) surrounded by stem cells that generate all cell types of the root. In the transit‐amplifying compartment, progeny of stem cells further divides prior to differentiation. Auxin controls the size of this transit‐amplifying compartment via auxin response factors (ARFs) that interact with auxin response elements (AuxREs) in the promoter of their targets. The microRNA miR390 regulates abundance of ARF2, ARF3, and ARF4 by triggering the production of trans‐acting (ta)‐siRNA from the TAS3 precursor. This miR390/TAS3/ARF regulatory module confers sensitivity and robustness to auxin responses in diverse developmental contexts and organisms. Here, we show that miR390 is expressed in the transit‐amplifying compartment of the root meristem where it modulates response to exogenous auxin. We show that a single AuxRE located in miR390 promoter is necessary for miR390 expression in this compartment and identify that ARF5/MONOPTEROS (MP) binds miR390 promoter via the AuxRE. We show that interfering with ARF5 / MP ‐dependent auxin signaling attenuates miR390 expression in the transit‐amplifying compartment of the root meristem. Our results show that ARF5/MP regulates directly the expression of miR390 in the root meristem. We propose that ARF5, miR390, and the ta‐siRNAs‐regulated ARFs modulate the response of the transit‐amplifying region of the meristem to exogenous auxin.
Running title: ARF5 regulates miR390One sentence summary: The expression of miR390 in the Arabidopsis basal root meristem is controlled by ARF5/MONOPTEROS. 1 SUMMARYThe root meristem is organized around a quiescent centre surrounded by stem cells that generate all cell types of the root. In the transit amplifying compartment progeny of stem cells further divide prior to differentiation. Auxin controls the size of this transit-amplifying compartment via Auxin Response Factors (ARF) that interact with Auxin Response Elements (AuxRE) in the promoter of their targets. The microRNA miR390 regulates abundance of ARF2, ARF3 and ARF4 by triggering the production of trans-acting (ta)-siRNA from TAS3. This miR390/TAS3/ARF regulatory module confers sensitivity and robustness to auxin responses in diverse developmental contexts. Here, we show that miR390 is expressed in the transit-amplifying compartment of the root meristem where it modulates response to auxin. A single AuxRE bound by ARF5/MONOPTEROS (MP) in miR390 promoter is necessary for miR390 expression in this compartment. We show that interfering with ARF5/MP dependent auxin signaling attenuates miR390 expression in the transit-amplifying compartment. Our results show that ARF5/MP regulates directly the expression of miR390 in the basal root meristem. We propose that ARF5, miR390 and the ta-siRNAs-regulated ARFs are necessary to maintain the size of the transit-amplifying region of the meristem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.