The use of machine learning harbours the promise of more accurate, unbiased future predictions than human beings on their own can ever be capable of. However, because existing data sets are always utilized, these calculations are extrapolations of the past and serve to reproduce prejudices embedded in the data. In turn, machine learning prediction result raises ethical and moral dilemmas. As mirrors of society, algorithms show the status quo, reinforce errors, and are subject to targeted influences – for good and the bad. This phenomenon makes machine learning viewed as pseudoscience. Besides the limitations, injustices, and oracle-like nature of these technologies, there are also questions about the nature of the opportunities and possibilities they offer. This article aims to discuss whether machine learning in biomedical research falls into pseudoscience based on Popper and Kuhn's perspective and four theories of truth using three study cases. The discussion result explains several conditions that must be fulfilled so that machine learning in biomedical does not fall into pseudoscience
Pengolahan bahasa Arab merupakan pengembangan teknik yang dapat digunakan untuk menganalisis bahasa Arab dalam konteks tertulis dan lisan. Natural Language Processing (NLP) memberikan kontribusi terhadap banyak sistem yang dikembangkan. Saat ini NLP telah dikembangkan dengan menggunakan teknik Machine Learning (ML). Algoritma ML banyak digunakan dalam NLP karena akurasinya yang tinggi. Penelitian ini membahas review penelitian pada kajian morfologi dalam Al Qur’an serta hubungannya dengan penerapan bidang komputasi sekarang, Natural Language Processing (NLP), klasifikasi wazan menggunakan NLP dengan beberapa tahapannya, termasuk pre-processing dan ekstraksi fitur. Penelitian ini menguji pola pemrosesan klasifikasi wazan menggunakan NLP dengan tahapan proses tokenization dan Term Frequency Inverse Document Frequency (TD-IDF). Hasil evaluasi model menghasilkan angka “1” untuk nilai precision, recall, F1-score, dan akurasi. Hal ini mengartikan bahwa program mampu mengklasifikasi secara tepat kata dalam pola wazan يَفْعُلُ dari pengujian sebanyak 30 data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.