Aim
To analyse temporal metacommunity dynamics in river networks in relation to hydrological conditions and dispersal.
Location
Fifteen river reaches from the Llobregat, Besòs and Foix catchments in the North‐Eastern Iberian Peninsula.
Taxon
Aquatic macroinvertebrates belonging to 99 different families.
Methods
We sampled aquatic macroinvertebrate communities during spring in 20 consecutive years. We built two environmental distances (one related with water chemistry and another one with river flow regime) and two spatial distances (network distance and topographic distance). Then we used Mantel tests (accounting for spatial autocorrelation) to relate macroinvertebrate dissimilarity with environmental and spatial distances. Additionally, we determined the dry and wet years using the Standardized Precipitation Index (SPI) and we classified macroinvertebrate families based on their ability to fly and to drift. Finally, we ran a linear regression model including the correlation value (r) of each Mantel test as response variable and distance type (environmental or spatial), SPI, dispersal mode, their pairwise interactions and a three‐way interaction as predictor variables.
Results
Metacommunity organization varied over time and it was significantly affected by precipitation, which can be related to river network connectivity. The environmental filters, mainly the flow regime, were generally more important than the spatial filters in explaining community dissimilarity over the study period. However, this depended on the dispersal abilities of the organisms. Network fragmentation due to flow intermittence during the dry years significantly reduced the dispersal capacity of strong aerial dispersers, leading to spatially structured metacommunities. For strong drift dispersers, community dissimilarity patterns were generally best explained by environmental filters regardless of SPI.
Main conclusions
A significant temporal variation in metacommunity organization can be expected in highly dynamic systems (e.g. Mediterranean rivers) and it might depend on the dispersal modes and abilities of the organisms, since they determine the response to changes in environmental and landscape filters.
Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.