In this paper, a novel control scheme is proposed to guarantee global asymptotic stability of bilateral teleoperation systems that are subjected to time-varying time delays in their communication channel and sandwich linearity in their actuators. This extends prior art concerning control of nonlinear bilateral teleoperation systems under time-varying time delays to the case where the local and the remote robots' control signals pass through saturation or similar nonlinearities that belong to a class of systems we name sandwich linear systems. Our proposed controller is similar to the proportional plus damping (P+D) controller with the difference that it takes into account the actuator saturation at the outset of control design and alters the proportional term by passing it through a nonlinear function; thus, we call the proposed method as nonlinear proportional plus damping (nP+D).The asymptotic stability of the closed-loop system is established using a LyapunovKrasovskii functional under conditions on the controller parameters, the actuator saturation characteristics, and the maximum values of the time-varying time delays. To show the effectiveness of the proposed method, it is simulated on a variable-delay teleoperation system comprising a pair of planar 2-DOF robots subjected to actuator saturation. Furthermore, the controller is experimentally validated on a pair of 3-DOF PHANToM Premium 1.5A robots, which have limited actuation capacity, that form a teleoperation system with a varying-delay communication channel.
This paper presents evolutionary approaches for designing rotational inverted pendulum (RIP) controller including genetic algorithms (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) methods. The goal is to balance the pendulum in the inverted position. Simulation and experimental results demonstrate the robustness and effectiveness of the proposed controllers with regard to parameter variations, noise effects, and load disturbances. The proposed methods can be considered as promising ways for control of various similar nonlinear systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.