We study topological constructions in the recursion theoretic framework of the lattice of recursively enumerable open subsets of a topological spaceX. Various constructions produce complemented recursively enumerable open sets with additional recursion theoretic properties, as well as noncomplemented open sets. In contrast to techniques in classical topology, we construct a disjoint recursively enumerable collection of basic open sets which cannot be extended to a recursively enumerable disjoint collection of basic open sets whose union is dense inX.
The area of interest of this paper is recursively enumerable vector spaces; its origins lie in the works of Rabin [16], Dekker [4], [5], Crossley and Nerode [3], and Metakides and Nerode [14]. We concern ourselves here with questions about maximal vector spaces, a notion introduced by Metakides and Nerode in [14]. The domain of discourse is V∞ a fully effective, countably infinite dimensional vector space over a recursive infinite field F.By fully effective we mean that V∞, under a fixed Gödel numbering, has the following properties:(i) The operations of vector addition and scalar multiplication on V∞ are represented by recursive functions.(ii) There is a uniform effective procedure which, given n vectors, determines whether or not they are linearly dependent (the procedure is called a dependence algorithm).We denote the Gödel number of x by ⌈x⌉ By taking {εn ∣ n > 0} to be a fixed recursive basis for V∞, we may effectively represent elements of V∞ in terms of this basis. Each element of V∞ may be identified uniquely by a finitely-nonzero sequence from F Under this identification, εn corresponds to the sequence whose n th entry is 1 and all other entries are 0. A recursively enumerable (r.e.) space is a subspace of V∞ which is an r.e. set of integers, ℒ(V∞) denotes the lattice of all r.e. spaces under the operations of intersection and weak sum. For V, W ∈ ℒ(V∞), let V mod W denote the quotient space. Metakides and Nerode define an r.e. space M to be maximal if V∞ mod M is infinite dimensional and for all V ∈ ℒ(V∞), if V ⊇ M then either V mod M or V∞ mod V is finite dimensional. That is, M has a very simple lattice of r.e. superspaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.