In this study, the effects of orthotropy ratio and plate length on the stress concentration factor for orthotropic plates with a centred circular opening under the action of uniaxial tension loads are investigated by use of the finite element method. This work demonstrates that the stress concentration factor depends on the length of the member in addition to other established geometric parameters. The value of the transition length between long and short plates is computed and reported as well. This study has shown that Tan's equation for a finite width orthotropic plate is accurate for a ratio of the opening radius to plate semiwidth of less than 0.35 for orthotropy ratios less than 50. A new concept is introduced, namely the transition ratio.
This paper presents analyses for computing and evaluating the behavior of the laminated composite plate at the contact area in single lap, mechanically fastened joints. The analyses involve three dimensional finite element models performed by ABAQUS 6.4-PR11 code to evaluate the stress distribution in contact surface, separation angle, the magnitude and location of maximum radial stress. Results are determined for quasi-isotropic model and attempts are made to validate the models with previous works. The variations of separation angles through the thickness are investigated and effects of friction and applied load level are discussed by using different friction coefficients at contact area. Non-symmetric separation about the bearing plane occurs and the separation angle is greater than 90° in some plies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.